Data-driven Medicine in the Age of Genomics

Overcoming the Challenge With Advanced Molecular Analytics

David A Dworaczyk, PhD
Life and Health Sciences Strategic Development
11 December, 2014
Safe Harbor Statement

The following is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated into any contract. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in making purchasing decisions. The development, release, and timing of any features or functionality described for Oracle’s products remains at the sole discretion of Oracle.
Where is the need and the opportunity?
Industry Trends

Significant reduction in cost of genome sequencing

Increase in real-world data

- Will you use secondary health data within the next 2 years?
 - Provider: 70%
 - Pharma: 61%
 - Payer: 54%

Aggregation and analysis of Big Data

More than half of clinical trials already have a molecular biomarker component

Patient stratification to identify population subsets most likely to respond to a therapy

Cloud technologies are enhancing R&D collaboration
Effective Use of Healthcare Data

Same data, different context

Enterprise Healthcare Analytics
- Healthcare Data Warehouse Foundation (HDWF)
- Oracle Healthcare Analytics Data Integration
 - Source-friendly interface
 - MDM
 - Data quality and business rules framework
 - Late-arriving data management, versioning, etc.
- Application Toolkit (data mart and self service BI)

Translational Research Center/InForm AMA
- Cohort Explorer
 - Patient Cohort ID & Selection
 - Statistical & Scientific Analysis
 - Biomarker Discovery
- OMICS Data Bank
- Precision Medicine
- Inform AMA

Health Information Exchange
- Master Person Index (OHMPI)
- Healthcare Data Repository
- HIG
- HIM
- Care & Disease Management
- Utilization Management
- Performance Measurement

Health Sciences Network
- Protocol Validation & Recruitment
- Safety & Pharmacovigilance
- Comparative Effectiveness Research
- Provider-Pharma Convergence
- Cloud Platform
Big Data Intensifies the Challenges...

VOLUME VELOCITY VARIETY VALUE
Today’s Research & Development Process
Linear: Focus on Optimization and Analytical Insights

<table>
<thead>
<tr>
<th>Discover</th>
<th>Develop</th>
<th>Post Marketing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plan</td>
<td>Study Setup</td>
<td>Study Conduct</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reduced cycle times</td>
<td>Traceability and compliance</td>
<td>Solution simplification</td>
</tr>
</tbody>
</table>
Effectiveness of Most Drugs

<table>
<thead>
<tr>
<th>Major Drug</th>
<th>Drug Effectiveness</th>
<th>Cost of Ineffectiveness to Healthcare System</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypertension Drugs</td>
<td>10-30%</td>
<td>$390 million – $1.2 billion</td>
</tr>
<tr>
<td>Heart Failure Drugs</td>
<td>15-25%</td>
<td>$345 million – $575 million</td>
</tr>
<tr>
<td>Anti Depressant Drugs</td>
<td>20-50%</td>
<td>$2.3 billion – $5.8 billion</td>
</tr>
<tr>
<td>Cholesterol Drugs</td>
<td>30-70%</td>
<td>$3.8 billion – $8.8 billion</td>
</tr>
<tr>
<td>Asthma Drugs</td>
<td>40-70%</td>
<td>$560 million – $1.0 billion</td>
</tr>
</tbody>
</table>

Source: The Personalized Medicine Coalition
Transformative R&D Process from Linear to Continuous

Data Access and Utilization Across the Lifecycle

- Targeted treatments
- More effective trials
- Faster time to market
- Improved safety
- Dramatically lower costs
Accelerated Drug Discovery Through Biomarkers

<table>
<thead>
<tr>
<th>Formulated To</th>
<th>Results</th>
<th>Targets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Imatinib (Gleevec)</td>
<td>First in class targeted cancer therapeutic</td>
<td>Targets the BCR-ABL protein only occurring in Chronic Myelogenous Leukemia (CML)</td>
</tr>
<tr>
<td></td>
<td>Now considered standard of care for Myelogenous Leukemia (CML)</td>
<td>Indication expanded to Gastrointestinal Stromal Tumors (GIST) with KIT mutations</td>
</tr>
<tr>
<td>Crizotinib (Xalkori)</td>
<td>Targets ALK protein, mutated in 7% of lung cancers</td>
<td>FDA approved from a trial of only 255 patients with the biomarker</td>
</tr>
<tr>
<td></td>
<td>3 years from biomarker mutation discovery to approval</td>
<td></td>
</tr>
<tr>
<td>Ivacaftor (Kalydeco)</td>
<td>Targets CFTR G551D mutation, present in 5% of cystic fibrosis patients</td>
<td>Phase-III trial approval based on 161 subjects</td>
</tr>
<tr>
<td></td>
<td>10.5% mean improvement in lung function</td>
<td></td>
</tr>
</tbody>
</table>
Biomarkers are Critical for Achieving Success

82% of projects with an efficacy biomarker were active or successful in Phase IIa
- compared to 30% of projects without such biomarkers

85% of all projects now include a “personalized healthcare strategy”
- initial analysis shows a 400% increase in success rate

Source: Nature Reviews | Drug Discovery, Lessons learned from the fate of AstraZeneca’s drug pipeline: a five-dimensional framework May 16, 2014

Right Target
- Strong link between target and disease
- Differentiated efficacy
- Available and predictive biomarkers

Right Tissue
- Adequate bioavailability and tissue exposure
- Definition of PD biomarkers
- Clear understanding of preclinical and clinical PK/PD
- Understanding of target liability

Right Safety
- Differentiated and clear safety margins
- Understanding of secondary pharmacology risk
- Understanding of reactive metabolites, genotoxicity, drug-drug interactions
- Understanding of target liability

Right Patients
- Identification of the most responsive population
- Definition of risk-benefit for given population

Right Commercial Potential
- Differentiated value proposition versus future standard of care
- Focus on market access, payer, and provider
- Personalized healthcare strategy, including diagnostic and biomarkers
But Significant Technology Challenges Exist

- Acquire, normalize, and combine clinical trial, OMICS, and other real-world data
- Operate across studies and silos of information
- Manage petabytes of OMICS data and ensure real-time information queries
- Maintain interoperability between open source and enterprise software
- Collaborate in the cloud while ensuring HIPAA compliance
How can Technology help?
Normalized, Standardized and Integrated Platform for a Pharma/Healthcare Research Database

Source Systems
- Clinical/EHR
- Study/EDC
- Omics
- Biobank
- Operations
- Financial
- Public Domain
- Claims

Analytics Applications

Analytics Tools
(Visualisation, Query Engines, Statistical Languages ...)

Healthcare Data
(Administrative, Clinical, Financial...)

Omics Data
(Genomics, Reference Data Sets...)

Data Integration, MDM & Other Services

Security
Platform for a Pharma/Healthcare Research Database

Analytics Applications
- Cohort Exploration
- Cohort Analytics
- Customer/Partner Custom Analytic Apps
- Statistical Apps (e.g., Survival Analysis)
- World-wide Researcher Collaboration (HSN)

Analytics Tools
- Reporting
- Dashboards
- Ad Hoc Queries
- Strategy Management
- R Statistical Language
- Big Data / Hadoop
- Mobile Analytics
- Information Discovery
- Data Mining
- Scorecard
- Real Time Decisions
- Unstructured Data Analysis
- Bring your own
- Spatial

Healthcare Data
- Interface Tables
- Consolidation, Integration & Validation
- Healthcare Data Model
- ETL from sources

Omics Data
- Omics Data Model
- Load
- Annotate
- VCF, GEP, CGI, MAF...
- Ensemble, HUGO, Swiss-Prot...

Data Integration, Master Data Management & Other Services
- De-Identification
- Terminology Services
- Unit of Measures
- Secure Files
- Data Quality
- Data Quality Governance
- In memory analysis
- Re-Identification
- Patient Linkage
- NLP
- Job Scheduling
- ETL
- End to End Data Lineage
- HW SW Integration
Clinical Development Integrated With Advanced Molecular Analytics

- Must be fully HIPAA compliant
- Need to integrate ePRO, EDC, CTMS data
- Single study and cross-study analysis of biomarkers
- Systematic way to manage genomic data generated in a clinical trial
- Genomic profile and analysis reporting
- Integrates with well-established public domain/RWD data for joint analysis with your own data

Enabling Organizations to Incorporate Genomic Data into Clinical R&D for Targeted, Biomarker-Driven Clinical Trials
Potential Workflow During a Study

- Genomic profiling
- Molecular data analysis for statisticians
- FDA submission
Potential Workflow Post-Study

Study 1

Study 2

Study N

- New biomarkers
- Drug repurposing idea
- Combination therapies
- Understanding why a trial failed
Pharma: Driving More Efficient and Effective Trials and Submissions

Phase Ia Study
- Genetic Analysis Data
- Experimental Group
- Control Group
- Integrated Data Analysis
- Responders
- Non-Responders
- Clean Signature Responders
- Muddy Signature Responders
- Muddy Signature Non-Responders
- Clean Signature Non-Responders

Integrated Data Analysis
- Phase Ia Clinical Study Design #1
- Phase Ia Clinical Study Design #2
- Phase Ia Clinical Study Design #n
- Integrated Data Analysis Approach

Refined/Proposed Genetic Screening Criteria
- Suspected Efficacy Biomarker Defined
- Efficacy Biomarker Confirmed

Multi-Study/Program Integrated Analysis Approach
- End Phase Ila Go/No-Go Decision
- NDA

Public Domain Genetic Database
- Internal Pre-Clinical Genomic Database

Pharma: Driving More Efficient and Effective Trials and Submissions
Translational Medicine Analytics Platform

Source Systems
- Clinical/EHR
- Study/EDC
- Omics
- Biobank
- Public Domain
- RWD
- Claims

Oracle Platform
- Data Integration
- Oracle Database
- OMICS Data Bank
- Healthcare Data Model

Analytics Application Ready
- Biomarker Discovery
- Protocol Validation & Patient Recruitment
- Patient Stratification
- Clinical & Molecular Data Collection for Trials
- Comparative Effectiveness
- Structured & Unstructured Data Analysis

Oracle
- OHMPI * NLP * Terminology Services
- Big Data Appliance & Exadata

Partner
- Spotfire
- Thomson Reuters

Open Source & Custom
- transSMART Foundation
- R

Copyright © 2014 Oracle and/or its affiliates. All rights reserved.
Summary

• The “Old” model of clinical development is no longer sustainable
• The entire therapeutic discovery, development, use and reimbursement paradigm is rapidly evolving
 – Linear → Iterative feedback loop
• The volume of data is overwhelming, and is growing
• The pace of technology development is accelerating
• Healthcare policy, process and practice drastically changing:
 – No Outcome = No Income
• The challenges have never been harder and our ability to make a positive impact has never been greater