Realizing the Dreams of Personalized Medicine

Data-Driven Medicine in the Age of Genomics

Jane Yu, MD, PhD
Senior Advisor, Healthcare & Life Sciences, IBM
The Promise of Personalized Medicine

“In Treatment for Leukemia, Glimpses of the Future” ...

A Patient’s Clinical History: Acute Lymphoblastic Leukemia (ALL)

- Researchers compare whole genomes sequences and RNA of patient’s normal & tumor cells
- Gene FLT3 is found to be significantly hyperactive in tumor cells
- FLT3 is targeted with Sutent, a drug already approved by FDA for kidney cancer

“I can’t overstate the importance of those discoveries that really were driven out of the research lab, but made their way, just in a matter of weeks, from the research lab to helping me as a patient.... With new technology we have today... we’re now able to decipher the very small changes that are present in my tumor genome which may look acutely different than someone else’s..... Changes in my tumor genome that were unique led to changes in my treatment.”

Lukas Wartman, MD, Medical Oncologist
Washington University of St. Louis, July 2012
The Path Toward Personalized Medicine

Completion of the Human Genome Project in 2003 and a significant decline in the cost of whole genome sequencing jump-started the rapid expansion of research on genomics in disease diagnosis, treatment, and prevention.

<table>
<thead>
<tr>
<th>Understanding the structure of genomics</th>
<th>Understanding the biology of genomics</th>
<th>Understanding the biology of disease</th>
<th>Advancing the science of medicine</th>
<th>Improving the effectiveness of healthcare</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Change in personalized medicine investment from 2005 to 2010</th>
<th>Biopharmaceutical companies investing in personalized medicine research in 2010</th>
<th>Prominent personalized medicine treatments & diagnostics available</th>
</tr>
</thead>
<tbody>
<tr>
<td>75%</td>
<td>94%</td>
<td>13 in 2006 to 113 in 2014</td>
</tr>
</tbody>
</table>

1 Tufts Center for the Study of Drug Development, 2010; 2 Personalized Medicine Coalition, 2014

Washington, DC • December 11, 2014
Personalized Medicine Research in the U. S.

Federal support such as the NIH-sponsored Clinical & Translational Science Award and NHGRI Genome Sequencing Programs makes progress in Personalized Medicine possible.
An International Healthcare Priority: United Kingdom

The UK invests £300M in the 100,000 Genome Project – a nationwide push to encourage regional life science investments and make the UK the worldwide leader in Personalized Medicine

“This agreement will see the UK lead the world in genetic research within years. I am determined to do all I can to support the health and scientific sector to unlock the power of DNA, turning an important scientific breakthrough into something that will help deliver better tests, better drugs and above all better care for patients....

As our plan becomes a reality, I believe we will be able to transform how devastating diseases are diagnosed and treated in the NHS and across the world, while supporting our best scientists and life science businesses to discover the next wonder drug or breakthrough technology.”

– U. K. Prime Minister David Cameron, August 2014*

An International Healthcare Priority: Qatar

Qatar Foundation launches the Qatar Genome Project as the nation’s leadership makes the development of an international Center of Excellence in Personalized Medicine a national priority

Qatar plans to sequence the genomes of large populations of Qatari nationals in order to develop genome-based diagnostics and therapies for illnesses common to communities in the Gulf Region

“We’re creating an environment conducive to research and education, and linking research to clinical practice. I see personalised medicines as a revolutionary way to diagnose and treat diseases in the future. And this is the vision of Qatar.”

– Her Highness Sheika Mosa bint Nasser, Chairperson of Qatar Foundation & Founder of the World Innovation Summit for Health, December 2013

* Qatar Tribune, December 11, 2013
An International Healthcare Priority: China

Beijing Genomics Institute leads the world in genomics investments, capturing at least 25% of market share \(^1\) as the only genome services organization with a global footprint.

The United States led the Human Genome Project and from that derived great benefit – the return on that investment was 178 to one in terms of economic growth. Yet, if you ask me now where is the largest investment in genomics in the world, it is not in the United States. It is in, Shenzhen, China. They read our playbook, and they saw what an opportunity was there. They took advantage of that.

– Francis Collins, MD, PhD, NIH Director, Former Head of the Human Genome Project, September 2014

\(^1\) ISI Group, *Forbes*, August 28, 2013
A Complex Technical Challenge

Understanding linkages between genomic variation, disease treatments, and clinical outcomes requires innovative technical solutions to speed discovery.

1. ‘Big’ Data
 - Data from 1000s of Patients...
 - ‘Omics
 - Clinical Records
 - Security for PHI
 - ‘HIPAA – compliant’
 - ... and thousands of scientific documents

2. Data Silos
 - Across geographies...
 - ... and within organizations

3. Unstructured Data
 - From clinical notes...
 - ... to medical images...
 - ... to peer-reviewed journals
 - ... to websites
 - ... to social media

Washington, DC • December 11, 2014
A Challenging Business Environment

Technical innovation and regulatory policies must enable and encourage progress amid growing life science R&D costs and greater revenue threats

Extended R & D Timelines

• Shrinking pool of drug targets requires shift to complex therapeutic areas
• Increasingly complex eligibility requirements extend clinical trials
• More stringent regulatory requirements delay trials approval process

Revenue Uncertainty

• Any increases in public & private life science R&D funding not commensurate with the cost of conducting scientific research
• Shifting models related to medication access and reimbursement

Greater Competition

• Shorter timelines for data exclusivity and IP protection reduce barriers to entry for competitors with similar products
IBM Watson extracts scientific and clinical information from large volumes of unstructured text and transforms it into a structured format for analysis.

1. **Omics Data**
 - Sample: Annovar
 - exonic NOD2 16 ... a frameshift ... SNP
 - exonic GJB2 13 ... associated with hearing loss ... exonic CRYL1, GJB6 13 ... a 342kb deletion encompassing GJB6, associated with hearing loss ...

2. **Clinical Data**
 - Sample: Patient History
 - ...was in good health until 2-3 months ago when she gradually developed fatigue and intermittent epigastric pain, ... most recent colonoscopy was within normal limits...

3. **Knowledge Base**
 - ClinicalTrials.gov
 - PubMed

Structured Format

Concept Associations

<table>
<thead>
<tr>
<th>Feature or Observation 1</th>
<th>Feature or Observation 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Washington, DC • December 11, 2014
IBM Watson as a Tool for Clinical Decision Support

IBM Watson helps oncologists at a leading Cancer Center mine millions of pages of peer reviewed literature for possible individualized treatments.

Memorial Sloan-Kettering Cancer Center

"By sharing our experience and knowledge, coupled with the power of Watson, we can help physicians around the world understand and mine the subtleties of each person’s illness and make evidence-based treatment decisions."

- Mark G. Kris, Attending, Memorial Sloan Kettering Thoracic Oncology Service and Lead Physician for IBM Watson Oncology

http://www.mskcc.org/cancer-care/watson-oncology
Keys to Accelerating Scientific Breakthrough

Leading biomedical research organizations investigating personalized medicine are asking for solutions that will give them a competitive advantage in therapeutic discovery.

Policies must support:

✓ **Standardization of clinical and life science data** across geographic areas

✓ **Development of technology solutions** capable of processing the rapidly growing quantities of genomic and other types of complex life science data

✓ **Scientific collaboration and data sharing** across organizations and geographic boundaries in a **secure environment** appropriate for Protected Health Information

✓ **Intellectual Property protection** and **financial incentives** that will enable pharmaceutical R&D organizations to continue innovation
Thank You

Any Questions? Please Contact:

Jane Yu, MD, PhD
jjyu@us.ibm.com