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Academic researchers need large amounts of computing 
power to solve tough computational problems. As problems 
become more data-intensive and require larger amounts of 
power to be solved, the demand for access to systems with 
immense computing power, or high-performance computing 
(HPC), has also grown. Unfortunately, the supply of HPC 
resources has not kept up with growing demand. 

Without sufficient access to HPC, researchers across a diverse range of 
fields, including engineering, Earth sciences, biology, and computer 
science, are not able to address important research challenges. Indeed, 
HPC has fueled various applications at the forefront of artificial intelligence 
(AI), including natural language processing and machine learning. But 
limited access to HPC is hampering the ability of AI researchers to develop 
new products and services that are vital in maintaining U.S. 
competitiveness, inhibiting AI practitioners from applying AI to defense 
innovation, and slowing innovation needed to address important societal 
challenges, including in health care and the environment. 

Increasing access to HPC for researchers exploring new applications of AI 
will involve increasing access to different parts of HPC systems, including 
hardware, software, and expertise, for users with large computational 
needs and the “the long tail” of users with more modest HPC needs that 
represent, in aggregate, the majority of AI researchers. The Department of 
Energy (DOE) primarily invests in the former and has increased its 
investments in data-intensive, large-scale HPC resources over the last 
decade by almost 90 percent, from $277 million in 2010 to $538 million 
(in constant 2010 dollars) in 2019. In contrast, the National Science 
Foundation (NSF), which is the primary source of HPC investments for the 
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latter, has decreased its HPC funding by approximately 50 percent, from 
$325 million in 2010 to $167 million in 2019. This discrepancy has led to 
a U.S. HPC portfolio weighted toward very powerful systems that can only 
support a smaller number of researchers. However, both funding sources 
fail to meet current demand. 

To increase access to HPC resources for more AI researchers, Congress 
should increase funding for supercomputing to $10 billion over the next 5 
years. Specifically, Congress should increase total NSF funding in HPC 
infrastructure to at least $500 million per year to match the current 
demand for time on NSF’s HPC resources, which is more than three times 
greater than current supply. In addition, Congress should increase total 
DOE funding in HPC infrastructure to at least $1.5 billion per year to match 
current demand for access to DOE’s HPC resources, which is three times 
greater than what DOE is currently providing. 

To determine where to allocate these funds, NSF should first measure how 
states are using HPC resources for AI research and then fund HPC systems 
in states that have low levels of HPC availability but whose institutions are 
conducting high levels of AI research. In states where HPC availability is 
high, federal investments in more HPC resources will not be the most 
effective way to close the national gap between HPC supply and demand 
because either institutions in the state already have funding for HPC-
enabled AI research and are using it, or they do not have research funding, 
which means access to HPC is not the problem, but rather research 
funding is. Focusing on states with low HPC availability but high AI research 
potential will allow the government to address instances where the gap 
between HPC demand and supply is greatest. Additionally, DOE and NSF 
should diversify the portfolio of HPC resources they are making available to 
AI researchers, including by exploring cloud computing options.  

Maximizing returns on investment in HPC will require careful resource 
management driven by an understanding of what system requirements AI 
researchers need and how existing grantees are using HPC systems. DOE 
and NSF should require those institutions that receive funding to adopt 
HPC auditing tools such as the XDMoD tool that reports on how optimally 
institutions are using HPC systems. NSF should also annually collect 
community requirements and publish roadmaps that allow it to better  
set HPC priorities and make more strategic decisions that reflect  
user requirements.  

Maximizing returns on investment in AI research will require mechanisms 
to effectively translate basic AI research into products and services for the 
marketplace. To this end, NSF should foster more public-private 
partnerships by tripling the number of awards it grants through its 
Partnerships for Innovation aimed at accelerating the path to market for 
new technologies, from 50 to 150 grants. Further, as part of its recent 
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initiative to create AI research institutes across the country, NSF should 
support proposals that are of regional importance and foster collaboration 
and partnerships between universities, local businesses, and state and 
local governments.  

Ensuring all individuals have equal opportunity to succeed in becoming the 
next generation of AI researchers will mean increasing access to HPC for 
groups that are traditionally underrepresented in science and engineering. 
NSF and DOE should support partnerships that coordinate the sharing of 
computing resources with Minority-Serving Institutions (MSIs) that include 
Historically Black Colleges and Universities, Hispanic-Serving Institutions 
(HSIs), and Tribal Colleges and Universities (TCUs), as well as re-
establishing targeted grants that fund HPC resources at MSIs. In addition, 
NSF and DOE should lower the barrier women face in gaining access to the 
supercomputing resources by replicating the Blue Waters project at the 
National Center for Supercomputing Applications that created an HPC 
allocations category open to researchers at U.S. academic institutions who 
are women. 

Finally, creating a well-prepared HPC workforce will require all students 
with computer science backgrounds to have clear, structured pathways 
into the HPC workforce. To ensure students with terminal two-year 
computer science degrees or who transfer from community colleges can 
seamlessly move into upper-division coursework at four-year colleges 
without having to spend time duplicating technical fundamentals, NSF 
should provide funding for consortiums of two-year colleges and four-year 
colleges to work together in developing structured HPC curriculums.  

WHAT IS HIGH-PERFORMANCE COMPUTING? 
HPC systems are those that have the computational power to solve difficult 
computational problems at any given time. Supercomputers are a subset 
of HPC systems, and describe “any computer that is one of the largest, 
fastest, and most powerful available at a given time.”1 HPC is more than 
just hardware, it is a combination of hardware, software, and computing 
expertise. Increasingly, HPC includes new modes of accessing computing 
resources, such as cloud computing, which makes it possible for a much 
larger pool of users to have access to HPC systems. Additionally, the 
performance of HPC systems depends on more than just a system’s peak 
compute performance. For different applications, performance measures 
such as storage and memory size can be more relevant.  

Figure 1 depicts the four main classes of computing systems: leadership-
class systems that are the most powerful computing systems, such as 
those often hosted at national laboratories; center-class systems, such as 
the national HPC systems hosted on large campuses; mid-range HPC 
systems, such as the department-capacity systems hosted at smaller 
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universities and those small and medium-sized businesses might use; and 
personal computing systems, such as a personal desktop or workstation. 

Figure 1: Branscomb pyramid describing the four tiers of computing 

 
 
The graph shows that the more powerful an HPC system is, the fewer 
comparably powerful systems there are, and the fewer users and research 
projects they can support. This is because more capable systems are more 
expensive, meaning fewer institutions can afford to invest in them for the 
research projects they support. We use this framework to organize and talk 
about the HPC landscape throughout this report. 

INCREASING ACCESS TO HPC REQUIRES INCREASING 
ACCESS TO HARDWARE, SOFTWARE, AND EXPERTISE 
Access to state-of-the-art HPC requires considerable investments in state-
of-the-art computing infrastructure, software that can effectively make the 
most of a system, and experts that can make both perform well. 

HARDWARE 
HPC systems consist of processors, memory, input-output (I/O) devices, 
and interconnection networks. 

For processors, HPC systems usually use either central processing units 
(CPUs) or graphics processing units (GPUs). CPUs and GPUs have a lot in 
common, but have different architectures and are built for different 
purposes.2 While CPUs can only have a small number of processing cores, 
they can focus those cores on getting individual tasks done quickly, making 
them well-suited to processing tasks wherein latency or per-core 
performance is important. GPUs are made up of many smaller and more 
specialized cores that work together to deliver massive performance on 
processing tasks that can be easily divided up and processed across many 
cores. This makes GPUs better suited to tasks wherein bandwidth rather 
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than speed is important. To see this, imagine a CPU is a sports car and a 
GPU is a semi-truck, and their task is to move a house full of boxes from 
one place to another. The sports car will move the boxes more quickly, but 
it will have to keep making the journey back and forth, whereas the semi-
truck will carry a much greater load but will travel more slowly. An HPC 
system in this case is like a 100-lane highway, wherein many vehicles are 
working in parallel and the ratio of sports cars to semi-trucks depends on 
the size and nature of the boxes to be moved.  

Vehicles need more than an engine to run though, and HPC systems 
require fundamental components other than processors to work. To move 
data in and out of the system, HPC systems use I/O devices to enable HPC 
systems to access and share data with other applications during 
simulations and analysis, which is important in highly data-intensive 
science applications.3 To enable data to move between processors or 
between centralized data storage and the compute system, HPC systems 
use interconnection networks. These network connections help many 
processors collaborate on the solutions of single large tasks.  

All high-performance computing platforms share these same core 
components—processors, memory, I/O devices, and interconnection 
networks—but how these components are combined to create an HPC 
system varies.   

A custom supercomputer is a single system that has been custom built for 
specific applications. It uses specialized processors and interconnects, and 
typically has very high bandwidth. The NEC Earth Simulator in Japan that 
runs global climate models is an example of a custom supercomputer.4 
This system is composed of 5,120 CPUs that were developed by Japanese 
IT company NEC Corporation, and is housed in a specially designed 
building at Japan’s Marine Science and Technology Center that is 70 
meters long and 50 meters wide.5 The operating system running on the 
Earth Simulator uses custom software built by NEC which means 
developers that wish to exploit the system’s full capabilities must create 
applications tailored to the system.6 

Custom supercomputers differ from other types of systems primarily in the 
memory bandwidth they can provide—that is, how quickly a processor can 
read or store data in memory—as well as the bandwidth they can offer 
between processors because of specialized interconnects.7 For a small 
range of specific applications wherein bandwidth is important, such  
as Earth simulation, it can be worthwhile investing in a specialized  
custom supercomputer.  

An HPC cluster is a collection of many separate servers, called nodes, 
connected via interconnects.8 Commodity clusters typically use off-the-
shelf processors, interconnects, and networks—and because they are 
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manufactured in high volume, enjoy economies of scale.9 The Texas 
Advanced Computing Center (TACC) at the University of Texas, Austin, has 
several HPC clusters, including Maverick2, which is a dense cluster of 
GPUs designed to support machine learning and deep learning research.10 

Importantly for governments, industry, and academic institutions wanting 
to invest in HPC systems, most systems only have a relatively short useful 
lifetime. A vibrant computing industry develops new technologies and 
products, meaning hardware depreciates over a three- to five-year lifetime. 
The perceived return on investment for a facility in the first five years 
therefore must be greater than the total cost of ownership because once 
hardware is depreciated and its performance and capability no longer 
competitive, only another infusion of capital will ensure service 
continuity.11 

SOFTWARE 
Researchers and businesses wanting to get the most out of HPC systems 
need access to leading-edge software that can efficiently exploit system 
capabilities. For example, within an individual computing core, there are 
individual sections of a processor which perform different tasks.12 The 
software programs that get the most out of a processor are the ones that 
can execute instructions across multiple sections simultaneously, reducing 
processing time and improving efficiency. 

Today’s HPC software options are rich and diverse. The libraries used to 
develop software programs include a wide range of mathematical and 
statistical frameworks, from those for simple vector operations to ones for 
complex differential equation solvers, as well as software for visualization 
tools, graphics, simulation, data analysis, and program analysis that are 
necessary for scientific applications.13 Whether used for climate modeling, 
fluid dynamics, astronomy, mechanical modeling, AI training, or something 
else, which software is the most appropriate to address researchers’ needs 
depends on their computational needs.  

These software tools, unlike hardware systems, can be useful for decades. 
Some of today’s most popular software libraries are large community 
codes, such as Google’s TensorFlow, a free open-source machine learning 
library that helps developers better train neural networks first launched in 
2017; or Facebook’s PyTorch, first launched in 2016, a machine learning 
library used for applications such as computer vision and natural language 
processing.14 These frameworks, and others like them such as Caffe, 
PaddlePaddle, and Wolfram Language offer building blocks for designing, 
training, and validating AI models.15  

However, the rapid growth in the diversity of hardware architectures makes 
it more difficult to predict what software developments will be needed to 
take advantage of future HPC systems, and how to create commercial 
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software that supports increasing hardware heterogeneity. In addition, as 
the Information Technology and Information Foundation’s (ITIF) report The 
Vital Importance of High-Performance Computing to U.S. Competitiveness 
explains, the rate of improvement in hardware performance has slowed, 
shifting the burden of novelty  software.16 Enabling researchers to continue 
to work at frontiers of science, engineering, and AI therefore requires 
providing them with access to appropriate software resources. Further, to 
make effective use of their most valuable shared resources, governments, 
companies, and universities need to encourage developers to create more 
efficient software and research techniques for HPC systems.  

EXPERTISE 
Using an HPC system for any application requires the skills of domain 
experts and committed and well-trained advanced computing 
professionals. The larger and more complex the HPC system, the more 
expertise required to make them perform well. Think of the skills needed to 
drive a car, fly a plane, or operate a spacecraft. One can drive a car without 
having any significant knowledge of the science or engineering of how it 
works; to fly a plane, a person needs months of professional training, on-
the-job experience, and a good understanding of how the system works; 
but to operate a space shuttle, an astronaut needs years of training and a 
strong understanding of the system and scientific principles. Similarly, low- 
and mid-range HPC systems are relatively straightforward to use with 
minimum training; users of center-class systems need more in-depth HPC 
training and practice; and using the extensive functionalities of leadership-
class systems requires a firm understanding of the architecture and 
engineering involved, in addition to significant domain expertise.17  

These include programming skills in computing language such as C++ and 
Python to understand and use existing HPC software and customize new 
software for novel applications; computer science skills to understand 
different hardware architectures, the functionalities they offer, and how to 
execute them; and extensive domain expertise to address challenging 
problems in science, engineering, business, social sciences, and the 
humanities.18 Training and retaining people with a combination of these 
skills is key to enabling increasing usage of high-performance computing. 

Despite their importance, these skills are often found in individuals who 
lack clear career paths and are dependent on an uncertain stream of 
funding for support in the public sector.19 Although these individuals tend 
to gravitate toward research centers with HPC leadership, their salaries can 
be far higher in the private sector than in the academic or government 
research community.20 This presents a challenge for universities and 
governments that need access to such expertise to stay competitive. As the 
National Security Commission on AI has noted, the growing divide in 
resources and opportunities between academia and the private sector is 
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“weighing the nation’s research portfolio toward applied, market-driven 
endeavors.” To ensure the growth of both public and private innovation 
activities, policymakers need to ensure they are not only training the next 
generation of researchers in HPC skills, but ensuring they have career 
opportunities that retain their talent within the academic community. For 
instance, offering reasonably secure, stable career paths and funding of 
research can incentivize skilled workers to stay in the public sector despite 
lower salaries.21 In addition, increasing access to HPC system operators 
can support more research projects. For example, NSF’s Extreme Science 
and Engineering Discovery Environment (XSEDE), a platform that 
coordinates the national sharing of supercomputing resources, has a 
practice that permits researchers to request an allocation of staff time 
along with computer time.22 Scaling this practice across all national 
supercomputing resources, and encouraging universities to do the same, 
can help make HPC more accessible. 

CLOUD COMPUTING IS BEST SUITED TO HIGHLY 
PARALLEL APPLICATIONS OR THOSE WITH VARIABLE 
DEMAND 
HPC systems can either be implemented on-premises or in the cloud. Cloud 
computing provides virtual access to HPC resources, often over the 
Internet, and can be public or private. Private clouds provision exclusive 
access of computing resources to a single organization.23 For instance, the 
U.S. National Aeronautics and Space Administration (NASA) has a center-
wide, private cloud called the Goddard Private Cloud, which offers 
customizable operating environments to researchers so that they can 
process and analyze large datasets and securely share data.24 Public 
clouds such as Amazon’s Elastic Compute Cloud, on the other hand, 
provide open access to the general public. 

The basic architecture of HPC systems used in cloud and on-premises 
computing are largely the same—that is, they both use single HPC systems 
or clusters of servers—but how users access these systems, and the 
services they can provide, differ. Cloud providers, such as Amazon Web 
Services (AWS), Microsoft Azure, and Google Cloud, host and maintain HPC 
systems and allow users to access computing power, storage, and 
databases, on an as-needed basis.25 Such clouds give access to high-
performance computing resources through a convenient network interface, 
making access easily available to those with an Internet connection, rather 
than restricting access only to those with access to a particular facility. 
Further, like an electrical grid, the resources available to a single job or 
project can vary from a single virtual CPU or GPU to a substantial fraction of 
the entire cloud, a feature often described as being “elastic.”26  

One benefit of cloud computing is it provides flexible, on-demand HPC 
resources to a wide range of scientific users in a relatively low-cost 
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environment, which is especially important for HPC users that are not 
wholly committed to, or technically capable of, justifying an in-house HPC 
system. For instance, an ongoing project at Los Alamos National Laboratory 
(LANL) involves searching for technical information in images that are 
openly available on the Internet.27 Because images are being harvested 
from the web, there is a risk of inadvertently downloading objectionable or 
malicious content. To test whether AWS’s image-recognition platform could 
prescreen large quantities of images quickly before researchers decided 
whether to bring them onto the LANL network, researchers put the cloud-
based algorithm to task labelling pictures of bicycles. LLNL researchers 
found that the commercially available image-analysis algorithms were 
useful and cost effective in screening large quantities of bicycle images, 
although they were not fully tailored to identify all the types of bicycle 
images the researchers were looking for.  

Another benefit of using cloud computing is improved resource utilization. 
Utilization is a common problem with on-premises HPC systems where 
computing capacity is fixed, leading to performance bottlenecks when 
demand is higher than supply, and creating wasted resources when 
demand is below supply. Cloud computing has an advantage because it 
matches computing supply to demand in an autonomic fashion, 
dynamically adding or removing resources.28 This is particularly useful for 
applications that have sporadic and variable demand, such as 
electroencephalography (EEG) data analysis, which involves processing 
records of electrical activity in the brain.29 Cloud computing is better suited 
for this application because it has the elasticity to fulfill the burst-like 
needs of processing EEG jobs without sitting idle for most of the time as an 
on-premises application would.  

Cloud-based computing architectures are not well-suited to all applications, 
though. As researchers from Indiana University have shown, the 
applications that are best suited to cloud technologies are those that are 
highly parallelized, meaning those that have multiple processes that can 
be independently executed in different processing units.30 Applications that 
have greater dependencies and require independent nodes working on 
separate problems to communicate with one another are better solved by 
on-premises systems because they have faster networks that enable nodes 
to communicate with each other better. For instance, predicting the 
weather in one country depends to a great extent on the weather in other 
places, which means making a forecast for one country needs to take into 
account forecasts elsewhere. Developing and operating a climate forecast 
model would therefore not be well-suited to parallel processing in the 
cloud. Similarly, data transfer costs on public clouds—though cheap and 
seemingly benign—can quickly eat into budgets for large simulations. It can 
be difficult to make clear comparisons between public cloud vendors, as 
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the pricing and fee structure for different solutions can change greatly from 
company to company.  

MEASURING HPC PERFORMANCE ACCURATELY 
REQUIRES SUITABLE BENCHMARKS 
HPC performance is typically measured by how many floating-point 
operations per second (flops) a system is capable of—a standard that 
evaluates binary and decimal arithmetic in computer programming 
environments.31 There are two main benchmarks for these tests: The first 
is the High-Performance Linpack (HPL) benchmark, which tests a system’s 
ability to perform large arithmetic operations using highly precise values. 
Since most non-AI HPC applications model phenomena in areas such as 
physics, chemistry, and biology, they need to be able to operate using 
highly precise numbers, such as Newton’s gravitational constant (about 
0.0000000000667) to accurately run simulations and process data. 
Representing these numbers using a standard computing format requires 
64 bits of storage, which is why the HPL benchmark is typically referred to 
as testing 64-bit accuracy or “double-precision” math.32 The other 
benchmark is the HPL-AI benchmark, which tests a supercomputer’s ability 
to perform mixed-precision math.33 Many applications that fuel advances 
in AI, such as machine learning, deep learning, and autonomous driving, 
achieve desired results at 32-bit and even lower precision formats because 
they do not need to use such highly precise values to accurately encode 
and manipulate the data needed to train and develop AI algorithms.  

But research has shown that simple benchmarks such as these are, 
individually, rarely predictive of the performance of an application, and 
even collections of benchmarks give only a rough estimate. Other relevant 
measures of performance include memory size and bandwidth; data size 
and bandwidth; interconnect bandwidth and application sensitivity to 
interconnect latency; integer and floating-point performance; and long-term 
data storage requirements.34 For instance, researchers from the University 
of California, San Diego and the U.S. Department of Defense (DOD) tested 
10 HPC systems that span 9 distinct system architectures to see how well 
several simple and predictive metrics, including the HPL benchmark, could 
predict a range of different HPC applications.35 They found that for some 
applications, metrics that are memory-oriented, such as the STREAM 
benchmark that measures sustainable memory bandwidth, were more 
predictive of system performance than the floating-point-oriented HPL 
benchmark. Further, their study shows that where application-specific 
computational requirements are understood, a few simple metrics can be 
combined and weighted appropriately to predict system performance with 
approximately 80 percent accuracy.36 While this research focuses on 
applications and systems that use CPUs, researchers from the University of 
Virginia and semiconductor company AMD found similar results when 
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testing how accurate existing benchmarks are at predicting the 
performance of the applications that rely on GPUs.37 Effectively predicting 
how well a system with CPUs or GPUs will support a particular application is 
best done by better understanding the computational requirements of an 
application, and testing a system’s ability to run this application against a 
suitable set of key metrics.  

Accurate measures of performance are important in guiding purchasers of 
HPC systems to the systems that best suit their goals, and for agencies 
such as DOE and NSF, which allocate valuable HPC resources, to more 
efficiently award computing resources. This will equip researchers with 
better resources, and enable them to leverage system capabilities to solve 
problems more quickly. 

INCREASING ACCESS TO HPC IS IMPORTANT FOR 
MAINTAINING U.S. LEADERSHIP IN AI 
The ability for public and private institutions to use HPC systems to 
leverage AI in solving problems and building new capabilities will 
determine, in part, the future of the United States’ economy, national 
security, and society. 

ECONOMY 
From an economic perspective, access to computing resources is 
important in maintaining U.S. market share in AI products and services. AI 
is poised to make a significant impact on the global economy, adding 
$15.7 trillion to the GDP by 2030, but success in the AI economy depends 
on how effectively firms can leverage data to generate insights and  
unlock value.38   

One area in which HPC-enabled AI is having significant impacts on the 
economy is the automotive industry, wherein advances in automotive and 
technology sectors have led to the emergence of connected and 
autonomous vehicles (CAVs). Autonomous and semi-autonomous vehicles 
are those in which at least some aspect of a safety-critical control function, 
such as steering, throttle, or braking, occurs without direct driver input.39 
Connected vehicles are those that identify threats and hazards on the 
roadway and communicate this information over wireless networks to give 
drivers alerts and warnings using a combination of technologies, such as 
advanced wireless communications, advanced vehicle-sensors, and GPS 
navigation.40 Developing and training CAVs and simulating more efficient 
traffic flows at scale requires the power and performance only HPC can 
bring.41 For example, the University of Michigan has invested in a 
supercomputer that supports machine learning applications to enable 
researchers in its MCity program, which develops intelligent transportation 
systems, to perform more complex simulations and better train deep 
learning models to recognize signs, pedestrians, and hazards.42 While the 
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private sector is financially incentivized to support research into how to 
make autonomous vehicles more accurate and sensitive, public support for 
advanced research in areas that cover key public policy goals is still 
needed because many public policy goals related to autonomous vehicles, 
such as improving safety, achieving carbon neutrality, and enhancing 
military CAV capabilities, represent public goods that the private sector 
cannot or will not adequately provide. 

Given automotive exports are a significant segment of all national exports, 
it is important the United States maintain its ability to compete globally in 
this industry. The United States exported $142 billion worth of vehicles and 
parts in 2018—more than any other U.S. industrial sector.43 If the United 
States cedes industry leadership in the research, development, and 
integration of CAV innovations, it stands to lose both the direct economic 
benefits that come from automotive exports, and the indirect effects CAVs 
bring to other industries.44 For instance, the global trucking and ground-
shipping industry could experience a significant boost from the 
development of driverless vehicles, which industry analysts estimate could 
bring economic gains ranging from $100—500 billion per year by 2025.45 
CAVs may also shift personal transport toward shared autonomous vehicle 
fleet use, reducing demand for the construction of parking lots, and 
enabling more efficient utilization of land.  

More broadly, data-driven AI research and development in areas such as 
transportation, manufacturing, and home automation need data-intensive 
computing capabilities to make products and services. Firms such as 
Microsoft, Google, Facebook, and Amazon have already driven the growth 
of the commercial AI ecosystem by establishing advanced, well-resourced 
research labs that, as Yann LeCun, chief AI scientist at Facebook  
pointed out, are a major distinction between the United States and  
its competitors.46  

NATIONAL SECURITY 
Greater access to HPC systems is critical in employing AI for defense 
innovation. The nature of warfare is rapidly changing to one wherein 
weapons systems and warfighters need to have an algorithmic and 
informational advantage to outmaneuver adversaries.47 To maintain its 
strategic advantage by combining new capabilities with new concepts of 
operation—what has been termed the “third offset”—the federal 
government needs to ensure it is equipping its researchers with the HPC 
tools they need to drive defense innovation.48 

For example, DOD scientists and engineers are using HPC systems at the 
Navy DOD Supercomputing Resource Center (DSRC) in Mississippi to 
improve the Navy’s ability to forecast ocean environments.49 Predicting an 
accurate model of the oceanic climate requires researchers to monitor 
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changes that include the movement of waters, heat and carbon content, 
freshwater, biogeochemistry, and sea levels, as well as studying the 
interactions of the ocean with the atmosphere, land, and ecosystems.50 
The complexity and level of analysis such models need to effectively inform 
Naval forces securing the seas can only be done using HPC systems—and 
to make these models even better, DOD should be looking to AI-enabled 
systems that can better weigh the relative importance of data regarding 
atmospheric and ocean dynamics.51 Fortunately, DOD already recognizes 
this, having recently invested in a new AI supercomputer that is to be 
implemented at Navy DSRC, alongside two similar systems at the U.S.  
Army research laboratory and one new system at the U.S. Air Force 
research laboratory.52 

AI and HPC can also improve the effectiveness of traditional military 
campaigns. For instance, U.S. nuclear weapons have not been tested since 
1992, which was before the United States signed a treaty that banned all 
nuclear tests. However, researchers from the Lawrence Livermore National 
Laboratory (LLNL) and the University of California, Berkeley, have shown 
that machine learning can offer new ways to monitor the effectiveness, 
yield, and explosive capability of nuclear weapons without breaking this 
treaty.53 Their research uses high-performance computing to model the 
various possible seismic events that might occur from deploying U.S. 
nuclear weapons, and machine learning to predict which of these is most 
likely to happen. In a similar example, researchers from the University of 
Tokyo launched a tool in 2018 that can predict the direction of radioactive 
material dispersion.54 Radioactive materials are generally concentrated 
downwind of their origins when wind blows continuously in one direction. 
The researchers were able to show that machine learning can estimate 
dispersion directions using models of the atmosphere with an average 
success rate of 85 percent.  

SOCIETY 
From a social welfare perspective, broadening access to HPC systems 
could enable more researchers to use AI in tackling problems for the public 
good in areas such as health care and the environment.55  

For instance, HPC has long been used in computational drug discovery and 
design, wherein techniques such as molecular simulation can help model a 
biological target associated with a disease, and identify drugs that might 
effectively bind to those targets and achieve a desired therapeutic 
outcome.56 But when the range of possible drug compounds is large, this 
process can be very long and the costs of running many simulations 
extremely high, slowing down the creation of life-saving drugs. Machine 
learning can complement this process by initially screening the known 
range of drug candidates to focus testing and simulation only on those with 
the right features to be successful. According to a 2019 report from the 
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U.S. Government Accountability Office, machine learning can save research 
and development (R&D) costs of between $300 million and $400 million 
per successful drug by accelerating drug discovery.57 These sentiments are 
echoed by scientists at LLNL who are combining AI, bioinformatics, and 
traditional supercomputing to help discover candidates for new antibodies 
and pharmaceutical drugs to combat COVID-19. Using two high-
performance computing systems and AI algorithms, researchers at LLNL 
screened over 1040 antibodies capable of binding to the virus that causes 
COVID-19, and narrowed the potential antibody candidates to an initial set 
of just 20. In essence, the broad advantage of converging AI and HPC is, as 
Jim Brase, LLNL’s deputy associate director for data science explained, 
“Now, we’re not just searching blindly. We’re actually creating structures 
that we think are in the proper part of the design space, then we do our 
evaluations on those.”58 

Similarly, HPC and data-intensive algorithms are important in advancing 
climate research. In order to fully understand climate change, research 
needs to be focused not only at global scales, but also on regional and 
local scales, using high-resolution global models, regional models, and 
observational datasets. For example, the World Climate Research Program 
has for over a decade coordinated tens of modeling groups in as many 
countries, running the same prescribed set of climate change scenarios on 
the most advanced supercomputers to produce petabytes of standardized 
output containing hundreds of physical variables spanning tens and 
hundreds of years.59 These climate model simulations of the past, current, 
and future climate have become one of the foundational elements of 
climate science, and have had direct impact on climate policy.60 The 
European Union has also recognized the opportunity HPC presents for 
accelerating carbon neutrality, as evidenced by the €2 million it 
contributed between 2015 and 2017 to a project in Spain that was 
applying HPC techniques to energy industry simulations, including  
using HPC to design more efficient wind turbines, develop more  
efficient combustion systems for biogas, and explore geophysics for  
hydrocarbon reservoirs.61 

ACADEMIC HPC DEMAND FAR OUTWEIGHS SUPPLY 
Publicly funded academic researchers requiring access to HPC capabilities 
for AI can either use systems that are hosted at their academic institutions 
or at national HPC centers. Allocations for computing time on HPC systems 
at the national level are made principally through competitive processes 
managed by DOE and NSF respectively. DOE’s allocation program, the 
Innovative and Novel Computational Impact on Theory and Experiment 
(INCITE) program, is in its 15th year and awards 60 percent of 
supercomputing time at DOE's Theta, hosted at the Argonne National 
Laboratory, and Summit, the United States’ most powerful supercomputer 
located at the Oak Ridge National Laboratory (ORNL).62 Over its 15 years, 
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INCITE has allocated time on its leadership-class supercomputers to over 
700 projects, and has been the chief method for researchers accessing 
the most powerful systems in the United States.63 While there is not much 
available data on the number of computing hours applicants have 
requested through INCITE, the program has noted that the total number of 
node hours applicants requested in 2020 was more than three times what 
the program plans to award this year. 

NSF’s resource allocation program, the Extreme Science and Engineering 
Discovery Environment (XSEDE) program, is more wide-reaching, and 
coordinates the sharing of eight HPC systems hosted at four sites: Indiana 
University; the Texas Advanced Computing Center (TACC); the Pittsburgh 
Supercomputing Center (PSC); and the San Diego Supercomputer Center 
(SDSC).64 XSEDE allocates resources in service units (SUs), which are 
equal to hours of processor core time but are more useful for allocators 
and users of compute time to compare allocations across HPC systems 
that may differ widely in both architecture and time of deployment.65 SUs, 
however, are only based on the result of the High Performance LINPACK 
benchmark run on each system.66 As explained earlier, excluding other 
relevant system parameters that may be more important to applications, 
such as memory or storage use, makes it difficult to ensure the most 
suitable systems are being allocated to researchers. This is particularly 
important as the demand for HPC systems is growing more quickly than the 
available supply, as shown in figure 2. 

It is difficult to know exactly how much time on HPC systems the nation’s 
researchers require, but one available metric between HPC supply and 
demand is the amount of computer time requested on XSEDE 
resources. As figure 2 shows, that gap has grown consistently over the  
last decade.  

Figure 2: Comparing requested XSEDE service units (SUs) to available SUs67 
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There is a growing gap between the number of service units requested for 
XSEDE resources and the number being made available, with demands for 
resources growing more quickly than supply. This implies insufficient 
computing resources are inhibiting the effective allocation of resources 
and hampering valuable work. The merit of this work is usually already 
established prior to the allocation process as most researchers applying for 
compute time have peer-reviewed funding awards and just need time on a 
HPC system. Those that do not already have funding are subject to an 
additional pre-review by the XSEDE resource allocation committee. In sum, 
a lack of resources is constraining already funded or merited research.68 

Some XSEDE resources are optimized for AI, such as PSC’s Bridges-AI, 
which is composed of 88 GPUs, but since all of XSEDE’s resources are 
currently used for AI applications, we can infer that demand for HPC 
resources to conduct both AI and non-AI research outstrips the supply  
of resources.69  

To get a sense of what areas of research are being funded, it is useful to 
look at a breakdown of XSEDE awards (in SUs) by research area. Figure 3 
indicates that a wide range of areas covering a majority of NSF directorates 
are represented, including mathematical and physical sciences, 
geosciences, engineering, biological sciences, and computer and 
information science and engineering (CISE). 

Figure 3: Allocated XSEDE service units by research area, in 201970 
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aggregate this data. However, looking at the list of active allocations 
provided on the XSEDE portal, it is easy to come across AI applications 
across a range of research areas. For example, one project allocated time 
at PSC led by a researcher from the University of Whitworth in Washington 
is investigating how AI can reduce the time to simulate molecular 
proteins.71 Another, led by a researcher from ORNL, is using the systems at 
PSC and TACC to train AI algorithms to make causal inferences on large 
COVID-19 observational datasets.72 A third, led by a researcher from the 
University of Pittsburgh, is generating metadata about historical letters 
dating from 1889 to 1940, and using AI to recognize patterns among 
them.73 It is therefore likely that allocations to AI applications follow a 
similar breakdown to the total allocations shown in figure 3, with the 
majority of allocations given to those in AI applications in mathematical 
and physical sciences, biological sciences, and geosciences. Given how 
tight resources are and demand is continuing to grow, it is commendable 
to see a predominant share of allocations are focused on science and 
engineering, where the opportunities for production capabilities are large.  

Further, to maximize the return on investment from AI research, NSF and 
DOE should explore more public-private partnerships. For example, one 
current XSEDE allocation led by a researcher at the University of California 
is investigating precipitation variability using machine learning.74 If NSF 
were to facilitate a partnership between this project and, for example, a 
commercial weather forecasting service such as Accuweather, it could 
ensure research outcomes could be more easily used to create useful 
products and services, such as a tool to help make better forecasts. NSF 
already has a program called Partnerships for Innovation aimed at 
accelerating the path to market for new technologies by providing funding 
for NSF-backed projects to work with industry on R&D, but funding is only 
available for up to approximately 50 projects each year.75 Similarly, NSF 
announced in August 2020 that it had partnered with the Department of 
Transportation, the Department of Homeland Security, and the Department 
of Agriculture to establish seven AI research institutes in six different 
states.76 The new AI institutes have specific target application areas, such 
as trustworthy AI in weather, climate, and coastal oceanography, and are 
designed to be hubs of AI innovation that emphasize use-inspired research. 
So far, NSF has announced it has partnered with four companies—
Accenture, Amazon, Google, and Intel—all of which are committed to 
solving AI problems of national importance.  

Making more efficient use of resources will also require more accurately 
allocating resources to researchers. As discussed earlier, poor measures of 
system performance present an obstacle to matching users with the 
resources that best meet their particular application needs; however, there 
is also a gap in understanding what the computational requirements of a 
user’s application are. Currently, proposals focus heavily on extracting 
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information on what peak speeds a project requires.77 The proposal 
mechanism at DOE and NSF should be updated to extract more useful 
information about what capabilities an application needs from a system, 
such as interconnect bandwidth and long-term data storage requirements. 
However, agencies should not make the application process for 
researchers too cumbersome, as this creates an obstacle to accessibility. 

One method to better understand user requirements and engage the 
research community is to establish roadmaps. An HPC roadmap is a long-
term plan that articulates what future investments an agency will make. 
Importantly, roadmaps do not suggest a single path to a destination, but 
rather multiple routes to a variety of goals. Such roadmaps could help 
make AI requirements concrete and relate them to future computing 
capabilities, facilitating planning by researchers, program directors, and 
facility operators at centers and on campuses over a longer time horizon. 
By capturing anticipated technology trends, the roadmaps could also 
provide guidance to those responsible for scientific software projects. In 
general, creating a strategy for acquiring the next generation of computing 
facilities could ensure researchers have access to the state-of-the-art 
systems they need to be productive and innovate at a higher rate than  
their competitors.  

NSF NEEDS TO INCREASE ITS HPC INVESTMENT 
NSF’s investments in HPC have fallen considerably over the last decade, 
even as the gap between demand and available computing resources  
has grown.78  

The Networking and Information Technology Research and Development 
(NITRD) program’s National Coordination Office records trends in overall 
HPC investment by NSF and DOE. Figure 4 shows the total federal 
investment in high-performance computing infrastructure, which includes 
hardware, directly associated software, communications, storage, data 
management infrastructure, and other resources supporting HPC, from 
2010 to 2019. This data was adjusted for inflation by using consumer 
price indices from the U.S. Bureau of Labor Statistics normalized to 
2010.79 The graph illustrates that while DOE’s investments increased by 
approximately 90 percent from $276 million to $523 million (in constant 
2010 dollars) during this period, NSF’s investments fell by approximately 
50 percent, from roughly $352 million to $167 million.  
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Figure 4: NSF and DOE investment in high-end computing infrastructure 
and applications by Networking and Information Technology Research 
and Development from 2010 to 201980  

 

It is important that NSF maintains high levels of HPC funding because, 
while both NSF and DOE invest in research to advance scientific 
understanding, NSF is primarily responsible for supporting the long tail of 
users that represent the majority of researchers and a significant 
proportion of research advances.81 NSF’s user base cuts across all federal 
agencies and academic fields, which means its investments are important 
in complementing those of DOE, DOD, and other agencies by promoting the 
scale and scope of impacts from state-of-the-art HPC. Because NSF 
investments in HPC systems support the majority of HPC users, insufficient 
NSF funding will not only cause the gap between HPC supply and demand 
to grow, but will accelerate the speed at which the gap grows. 

Figure 5 shows that NSF’s HPC portfolio includes a diverse set of resources 
but lacks a sufficient quantity of systems that can support increasing 
demand. As of 2019, NSF supported several leadership facilities, including 
Blue Waters at the University of Illinois, Urbana-Champaign and Stampede 
at the University of Texas, Austin; a high-speed, compute-intensive system, 
Comet, at the University of California, San Diego; high-bandwidth, data-
intensive resources in Wrangler at University of Texas, Austin and Bridges-
AI at the Pittsburgh Supercomputing Center; and a cloud resource, 
Jetstream, at Indiana University. 
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Figure 5: An overview of NSF’s HPC systems and services, as of 2019 

 

NSF’s portfolio is well-suited to meet the diversity of future needs, but not 
the quantity of future needs. Most of the systems in NSF’s portfolio have 
been decommissioned recently or will be soon, which means NSF has an 
opportunity now to consider which systems to invest in and how many, in 
order to best improve the nation’s HPC capacity and capability for AI. To do 
this, NSF should invest in more moderate-sized, campus-based HPC 
systems. This makes sense for a number of reasons: First, most AI 
research projects that need HPC only require tens or hundreds of 
processors but need computations to be run many times.82 Using national 
leadership facilities that are designed for the most demanding 
computational problems, and fitted with tens of thousands of cores and 
expensive internode networks for large I/O rates, would not be a cost-
effective use of these resources. Second, the operating costs of campus 
systems, including power, cooling, and staffing, are typically borne by the 
host institution, which means NSF can better maximize their investment.83  

Other nations are investing substantially in increasing access to HPC that 
will significantly buoy their ability to make AI advances, such as the 
European Union, which recently announced it plans to provide €8 billion 
over the next decade to develop, deploy, and extend the EU’s  
HPC infrastructure.84 It is time for the United States to equip its  
own researchers. 
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THE GOVERNMENT SHOULD INVEST IN STATES WHERE 
HPC USAGE IS LOW BUT AI RESEARCH IS HIGH  
While the federal government should provide more access to center-class 
and mid-range systems for AI research, the questions are: Which states 
should the government invest in, and which institutions should it partner 
with? Since institutions themselves gain a competitive advantage in 
attracting and retaining faculty from providing HPC resources, another 
question is how much computing should individual institutions be 
responsible for providing? To demarcate institutional and NSF 
responsibility, policymakers should first measure how states are using 
current HPC resources for AI research.  

The government should prioritize investing in cases wherein states have 
low levels of HPC availability but there is demonstrable evidence that the 
institutions within them are conducting high levels of AI research. This will 
allow the government to address instances wherein the gap between 
demand and supply is greatest. In cases wherein HPC availability is already 
high, federal investments in more HPC resources will not be the most 
effective way to close the gap because either institutions already have 
funding for HPC-enabled AI research and are using it, or they don’t have 
research funding which means access to HPC is not the problem, research 
funding is. In cases wherein HPC availability and AI research is low, the 
government should require institutions to first increase funding for AI 
research or prove that they have sought partnerships with industry, as 
there is a risk that investments may not return increases in AI research.  

To show the distribution of center-class HPC resources per capita, figure 6 
uses XSEDE data on the service units researchers used in 2017, 2018, 
and 2019, as well as data on the researcher’s organization and the state 
in which the organization is located.85 We assume the more service units 
researchers in a given state are using, the more access they have to  
HPC resources.  

To see the relationship between how much local access researchers in 
each state have to HPC resources and how much funding for AI research 
there is, figure 6 also uses data on how much funding the top institutions 
(defined by whether they are ranked among the top 500 research 
institutions) in each state are making in computer science, demarcating 
federal research expenditures from non-federal research expenditures.86 
This data is limited to R1 (very high research activity) and R2 (high 
research activity) universities, including only the 161 institutions that have 
annual federal research expenditures of $40 million or more overall. Given 
cloud computing is best suited to highly parallelized applications or those 
with variable demand, having local access is important in supporting the 
full range of AI applications.  
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Figure 6: Proportion of XSEDE service units allocated per capita and size 
of research funding from high-research institutions in computer science 
per capita in each state  

 
The key insight from this figure is more access to center-class HPC 
resources is found in states that have leading academic institutions, which 
can either stand up their own HPC centers or partner with other leading 
research institutions in their state to create multi-institutional centers. Of 
these states, those with high levels of funding in computer science are the 
ones attracting and retaining the talent needed to foster HPC-enabled AI 
research. Little access to center-class HPC resources is found in states 
with few research academic institutions. But of these states, those with 
high levels of research funding for computer science are the ones 
attracting the partnerships, funding, and talent needed to invest in  
better systems.   

Looking first to the states with high HPC usage and computer science 
research funding, indicates Massachusetts, Pennsylvania, and Illinois as 
some of the best performing states. Each used more than 120 service 
units per capita at their institutions between 2017 and 2019, and together 
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were the states with the second, third, and eighth highest funding in 
computer science research respectively. The key to these states’ success 
is they have a number of top-ranked institutions that have partnered 
together to create supercomputing centers of excellence, thereby giving 
them a competitive advantage in attracting and retaining researchers, 
faculty, and federal research grants. In Pennsylvania, for instance, 
Carnegie Mellon University and the University of Pittsburgh partnered to 
create the Pittsburgh Supercomputing Center, which is one of the nation’s 
leading supercomputing centers, particularly for AI applications.87 PSC 
recently won a $5 million NSF award to build a new AI supercomputer 
which, in addition to its Bridges-AI supercomputer that exclusively uses 
GPUs, will further cement the center as a hub for HPC-enabled AI 
research.88 Similarly, in Massachusetts, Boston University, Harvard 
University, the Massachusetts Institute of Technology (MIT), Northeastern 
University, and the University of Massachusetts have partnered to operate 
the Massachusetts Green High Performance Computing Center (MGHPCC), 
a world-class supercomputing center with an emphasis on fostering 
research collaborations in energy, climate, and the environment.89 
MGHPCC’s resources are available to all partner university faculty, their 
students, and their collaborators for research and educational use in 
courses related to computational science.90 This helps retain staff and 
attract students to the computer science programs at Massachusetts’ 
universities, which are already some of the best in the world. MIT also 
hosts the Lincoln Laboratory Supercomputing Center (LLSC), a DOD-funded 
supercomputing facility focused on research to meet national security 
needs.91 Through collaborations, student internship programs, and 
seminar series, LLSC and MIT share talents, facilities, and resources. For 
example, LLSC recently acquired an AI supercomputer optimized for 
training machine learning algorithms and performing deep neural network 
operations, providing MIT researchers with access to the 20th-best 
supercomputer in the United States, according to June’s Top 500 list.92 In 
Illinois, the flagship institution of the University of Illinois hosts the National 
Center for Supercomputing Applications, one of the original national 
supercomputing centers NSF developed and deployed under its 
supercomputing program.93 With support from NSF, the state of Illinois, 
industry partners, and other federal agencies, Illinois is able to provide 
researchers with lots of access to HPC resources, and is attracting AI 
researchers with large amounts of funding for computer science.  

States with high levels of HPC usage and lower levels of research in 
computer science include California, Colorado, and Oklahoma. All of these 
states have large, well-funded HPC centers, but funding for computer 
science is either not highly prioritized or is limited by the tight budgets 
public institutions in these states face. In California, for example, the San 
Diego Supercomputing Center is a leading HPC center with four 
supercomputers, one of which is specifically designed to serve the “long 
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tail” of science.94 This supercomputer, Comet, has 288 GPUs, making it 
well-suited to AI applications and computer science researchers. However, 
unlike Massachusetts, Illinois, or Pennsylvania, the majority of research 
institutions in California, Colorado, and Oklahoma are public ones that rely 
on federal and state funding, meaning they are subject to funding changes 
that come with changing policy priorities and economic conditions.95 For 
example, Colorado State University, Fort Collins cut more than 355 faculty 
and staff positions between 2009 and 2013 in response to state budget 
cuts. Further, despite all having large-scale supercomputing centers, the 
top research facilities in these states are publicly funded and have less 
than the optimal amount of research in computer science. In Colorado, the 
National Center for Atmospheric Research (NCAR) provides the university 
community with world-class facilities to better predict severe weather, 
model flooding with decision-making tools, develop more detailed air 
quality forecasts, and simulate the impacts of climate change on the 
planet.96 Machine learning models could help in each of these goals by 
more intelligently drawing useful information from data; making forecasts, 
models, and simulations more accurate; and reducing the budget, time, 
and resources needed to run simulations. But Colorado is trailing in AI 
research funding, ranking 28th in the United States in providing computer 
science research at top institutes. Similarly, Oklahoma has the OU 
Supercomputing Center for Education and Research, which supports 23 
institutions across Oklahoma, including Langston University, the only 
Historically Black College and University (HBCU) in the state. But Oklahoma 
is 42nd in the United States in providing computer science research at top 
institutes. A lack of sufficient funding for computer science in states that 
already have significant HPC resources inhibits an easy opportunity to 
foster AI research. 

States with low levels of HPC usage and high levels of research in 
computer science include Alabama, Indiana, Utah, and Georgia. These 
states have top research institutions that have shown they recognize the 
importance of R&D in AI and HPC, but lack access to powerful local HPC 
resources. At Indiana University, AI research has become a major focus 
after an alumnus and founder of cloud computing company ServiceNow, 
Fred Luddy, gifted the university $60 million to establish a multidisciplinary 
AI initiative at its school of computing and engineering.97 This gift, the 
second largest in the school's history, has allowed the school to create a 
comprehensive research program covering several branches of AI, 
including machine learning, robotics, computer vision, and deep learning.98 
But until this year, the university did not have the HPC resources to support 
its research program. In January 2020, Indiana University unveiled its new 
supercomputer, Big Red 200, which has GPUs and memory components 
that specifically gear it toward AI applications.99 When Big Red 200 goes 
into production, it will help provide Indiana’s AI researchers with the HPC 
access they need to compete with other states. Similarly, at the Georgia 



 
 

  
 

CENTER FOR DATA INNOVATION 25 

Institute of Technology, AI and machine learning represent a large part of 
faculty and research interests.100 The university’s research efforts have 
been significant enough to attract a partnership from Sandia National 
Laboratories, a national R&D laboratory focused on testing nuclear 
weapons, and the Pacific Northwest National Laboratory, a national R&D 
laboratory focused on energy, national security, and the environment.101 
The plan is to launch a new research center focused on AI, and to support 
its continued competitive AI research. Georgia Tech has acquired a new 
supercomputer, Hive, through a $3.7 million NSF grant and a $1.6 million 
contribution by the university. The university has reserved about 20 
percent of Hive’s capacity to support the research activities of regional 
partners and HBCUs through the XSEDE program, with Morehouse College, 
Spelman College, and Clark Atlanta University all currently having time 
allotted on the system. This partnership and investment in HPC resources 
will provide Georgia’s researchers with the access they need to push 
Georgia into being an HPC and AI competitor. In Utah, the Scientific 
Computing and Imaging (SCI) Institute is a research institute that focuses 
on conducting application-driven research in new scientific computing and 
visualization techniques and tools.102 The SCI Institute’s faculty and alumni 
are recognized around the world for their contributions to scientific 
computing, helping explain why Utah attracts large amounts of computer 
science funding.103 But Utah’s academic supercomputers are neither 
particularly large nor particularly powerful. The University of Utah, for 
example, has several HPC clusters, but none of them would be considered 
center-class systems.104 Given Salt Lake City and Ogden have been 
identified among the top 10 regions in the United States whose workforces 
AI will impact the most, it is important for Utah to prepare its industries for 
the future by providing resources for AI experimentation.105 

States with low levels of HPC usage and research in computer science 
include Arkansas, South Dakota, and Wyoming. These states lack the 
computer science funding needed to attract researchers, which in turn can 
attract funding for better facilities. In Arkansas, the high-performance 
computing center at the University of Arkansas does have some HPC 
resources, including Trestles, which is geared toward a diverse set of non-
AI applications; and, as of 2019, Pinnacle, which has 20 GPUs. While these 
resources are important for creating an HPC ecosystem, as explained 
earlier, high-performance computing requires expertise.106 The University 
of Arkansas has no significant funding in computer science, which impedes 
it from attracting skilled HPC facility staff and training the next generation 
of AI researchers. Similarly, the University of South Dakota has two modest 
HPC systems, Lawrence and Legacy, that it makes available to faculty and 
students, but South Dakota, together with Maine, are the only states to 
have no research facilities among the 161 institutions identified as 
conducting high-level research in any field.107 Likewise, while the University 
of Montana recently won a $400,000 NSF grant to acquire a modest HPC 
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cluster, the new system, as the executive director of cyber infrastructure 
there described, will be close to what other universities had “15  
years ago.”108 

In each of these scenarios, the actions needed to increase HPC-enabled AI 
research varies, from increasing funding in computer science to funding 
the acquisition of more HPC systems to doing both. Some institutions such 
as Indiana University, and more recently the University of Florida, have 
significant gifts from alumni that propel them into AI research hubs that 
independently increase access for the whole state and attract 
partnerships, talent, and more funding. But other states, such as Arkansas, 
may have never obtained an HPC system for AI without a $400,000 grant 
from NSF. The complexities involved in national HPC needs and the 
unpredictability of institutional HPC funding means federal policymakers 
need to have a coherent, detailed understanding of current HPC 
requirements at a sufficiently granular level in order to make informed, 
strategic decisions.   

RECOMMENDATIONS 
There are eleven key steps DOE, NSF, and Congress should be taking to 
ensure the United States can increase access to HPC resources for AI 
researchers. 

1. CONGRESS SHOULD PROVIDE A TOTAL OF $10 BILLION IN HPC 
FUNDING OVER THE NEXT FIVE YEARS TO NSF AND DOE TO MATCH 
SUPPLY TO DEMAND.  
Congress should significantly increase funding for HPC to both NSF and 
DOE to match current demand. 

NSF funding in HPC fell by approximately 50 percent from $352 million in 
2010 to $167 million (in constant 2010 dollars) in 2019. This level of 
funding supported less than a third of the demand for access to NSF’s HPC 
systems in 2019 (as shown in figure 2). To meet the current demand for 
time on NSF’s HPC resources, which is more than ten times what it was in 
2010, Congress should increase NSF funding in HPC infrastructure to at 
least $500 million per year for the next five years. 

DOE funding in HPC, on the other hand, has increased by approximately 90 
percent from $276 million in 2010 to $523 million (in constant 2010 
dollars) in 2019. However, current demand for access to DOE’s HPC 
resources is still three times greater than what DOE is providing. Congress 
should also authorize DOE to increase funding in HPC infrastructure to at 
least $1.5 billion per year.     
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2. NSF SHOULD SUPPORT THE LONG TAIL OF POTENTIAL HPC 
USERS WHO REPRESENT THE MAJORITY OF RESEARCHERS. 
States such as Alabama, Indiana, Utah, and Georgia have top research 
institutions that are conducting high levels of AI research but lack access 
to powerful local HPC resources for AI research. NSF should focus funding 
for mid-range and center-class systems in states that have low HPC 
availability but are conducting high levels of AI research. NSF should not 
focus HPC funding in states that already have high levels of HPC resource 
availability. Instead, for institutions in those states that have low levels of 
AI research, NSF should increase funding opportunities for AI research.  

3. DOE AND NSF SHOULD ALLOCATE HPC COMPUTE TIME MORE 
EFFICIENTLY. 
To accurately allocate HPC resources to researchers, DOE and NSF need to 
understand what users’ computational requirements are. Currently, 
allocation proposal processes focus heavily on extracting information only 
on what peak HPC system speeds a given project requires. DOE and NSF 
should update their allocation proposal processes to extract additional 
information on what capabilities users need, beyond system speed. This 
should include details on the interconnect bandwidth and long-term data 
storage requirements researchers need. 

4. DOE AND NSF SHOULD PROVIDE ACCESS TO HPC EXPERTS TO 
IMPROVE RESEARCHER PRODUCTIVITY. 
Using an HPC system for any application requires the skills of well-trained 
advanced computing professionals. The larger and more complex the HPC 
system, the more expertise required to make them perform well. DOE and 
NSF should explore ways to provision HPC expertise in more effective and 
scalable ways to improve researcher productivity. For instance, NSF should 
make more widespread the XSEDE practice that permits researchers to 
request an allocation of staff time along with HPC time across all NSF-
funded HPC systems. These staff experts are from the XSEDE partner sites 
whose time is devoted to working with allocated projects to accelerate 
progress toward research objectives. DOE should similarly expand 
supporting HPC staff resources for researchers at the Argonne Leadership 
Computing Facility and the Oak Ridge Leadership Computing Facility. 

5. NSF AND DOE SHOULD INCREASE ACCESS TO HPC FOR 
MINORITY-SERVING INSTITUTIONS. 
From 1997 to 2004, NSF supported the Education, Outreach, and Training 
Partnership for Advanced Computational Infrastructure (EOT-PACI), a 
partnership of dozens of institutions and organizations throughout the 
nation that coordinated the sharing of computing resources with Minority-
Serving Institutions (MSIs). EOT-PACI was noted as broadening 
participation to over 50,000 underrepresented researchers.109 NSF should 
re-establish and support such partnerships that coordinate the sharing of 
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computing resources with MSIs that include HBCUs, HSIs, and TCUs. For 
example, NSF has already established an initiative to enhance the 
participation of underserved communities in scientific research called the 
National Inclusion across the Nation of Communities of Learners of 
Underrepresented Discoverers in Engineering and Science (INCLUDES).110 
Since 2018, INCLUDES has provided more than $7 million in funding for 
the Computing Alliance of HSIs, a program working to help Hispanic 
Americans participate in, contribute to, and become leaders in computing. 
But this is currently the only initiative INCLUDES is funding that is aimed at 
advancing minority participation in computing.111 NSF should provide 
similar funding for computing networks and collaborations that target 
HBCUs, such as the three-year initiative called the Alliance between 
Historically Black Universities and Research Universities for Collaborative 
Education and Research in Computing Disciplines, which NSF funded in 
2006.112 NSF should also provide similar funding for computing alliances 
targeting TCUs, such as the Tribal Computational Science Program that 
was once a part of EOT-PACI.113 Additionally, NSF should re-establish 
targeted grants that fund HPC resources specifically at MSIs, such as the 
Minority Institutions Infrastructure grant. DOE, on the other hand, should 
re-establish projects that provide funding for MSIs with the aim of training 
minority students in HPC for eventual employment with the agency, such as 
the three-year project funded at Alabama A&M University from August 
2006 to August 2009.114  

6. NSF AND DOE SHOULD INCREASE ACCESS TO HPC FOR WOMEN. 
Women are highly underrepresented in HPC, with research estimating that 
women make up less than 17 percent of the HPC workforce.115 An analysis 
of participant data from nine HPC and HPC-related peer-reviewed 
conferences from 2017 also found that only 10 percent of all HPC paper 
authors were women, with representation of women being particularly low 
among industry researchers and at higher experience levels.116 This is due 
in part to the gender imbalance of those with science and engineering 
backgrounds that ultimately make up the HPC community. To support the 
pipeline of qualified candidates in HPC, NSF and DOE should encourage 
more women to enroll and persist in engineering and science-based 
computing degrees by providing funding initiatives across the country that 
improve recruitment and retention rates of women in computing majors, 
such as the grants NSF has provided to the Mississippi Alliance for Women 
in Computing.117 To lower the barrier for women gaining access to 
supercomputing resources, NSF and DOE should replicate the Blue Waters 
project at the National Center for Supercomputing Applications that 
created an allocations category open to researchers at U.S. academic 
institutions who are women.118 
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7. NSF SHOULD PROVIDE FUNDING TO DEVELOP HPC CURRICULA 
AT TWO-YEAR COLLEGES THAT ENABLE SEAMLESS TRANSFER INTO 
FOUR-YEAR COLLEGES. 
The demand for a well-prepared HPC workforce is growing, but there is a 
gap between the technical skill sets needed, particularly at the entry level, 
and the number of individuals with adequate skills and training. This is 
partly because there is a leaky pipeline from the computer science pre-
baccalaureate awards two-year colleges provide to the computer science 
bachelor’s degrees four-year colleges provide, hindering many students 
from following a computer science workforce pathway.119 To facilitate 
transfer pathways for students, NSF should provide funding for 
consortiums of both two-year and four-year colleges to work together in 
developing HPC curricula that ensure students with terminal two-year 
computer science degrees or who transfer from a community college have 
covered all of the lower division coursework they need to in order to 
seamlessly move into upper division coursework with little duplication of 
technical fundamentals or need for remediation. Western Oregon 
University, for example, has worked with two community colleges to revise 
their own information systems curriculum to ensure students with two-year 
computer systems and information technology degrees can transfer 
directly into upper division courses. NSF should re-establish the funds it 
has provided in the past to encourage other institutions to do the same.120   

8. NSF SHOULD DIVERSIFY THE PORTFOLIO OF HPC RESOURCES IT 
MAKES AVAILABLE TO AI RESEARCHERS. 
Cloud computing gives access to high-performance computing resources 
through a convenient network interface, making access easily available to 
those with an Internet connection, rather than restricting access only to 
those with access to a particular facility. Congress should authorize the 
National AI Research Resource Task Force Act of 2020 introduced by Rep. 
Eshoo (D-CA) that directs NSF to establish a task force focused on 
developing a public national cloud computing resource for AI research.121 
In addition, NSF currently only awards computing time on one private cloud 
environment, Jetstream, hosted by Indiana University through its XSEDE 
program. NSF should expand its HPC portfolio to enable awards of more 
cloud services by investing in more private clouds and partnering with 
multiple public clouds. For example, approved users could receive a budget 
to spend with their chosen commercial cloud provider. 

9. NSF SHOULD ESTABLISH AND PUBLISH ROADMAPS THAT 
ARTICULATE WHAT FUTURE INVESTMENTS IT WILL MAKE. 
Creating a long-term plan for acquiring the next generation of computing 
facilities ensures researchers have access to the state-of-the-art systems 
they need to be productive and innovate at a higher rate than their 
competitors, as well as providing guidance to those responsible for 
scientific software projects. DOE has already established roadmaps as part 
of its Exascale Computing Initiative, and NSF should follow suit. NSF should 
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annually collect community requirements and publish roadmaps that allow 
it to better set HPC priorities and make more strategic decisions that 
reflect user requirements. This should be led by a national AI research 
resource task force, such as the one proposed in the National AI Research 
Resource Task Force Act of 2020. 

10. NSF SHOULD FOSTER MORE PUBLIC-PRIVATE PARTNERSHIPS. 
Maximizing returns on investment in AI research will require mechanisms 
to effectively translate basic AI research into products and services for the 
marketplace. NSF already has a program called Partnerships for Innovation 
aimed at accelerating the path to market for new technologies by providing 
funding for NSF-backed projects to work with industry on R&D, but funding 
is only available for up to approximately 50 projects each year. NSF should 
at least triple the number of awards it grants through this program from 50 
to 150. Similarly, as part of its National AI Research Institutes initiative, 
NSF has partnered with four companies—Accenture, Amazon, Google, and 
Intel—all of which are committed to solving AI problems of national 
importance. NSF should also support proposals that are of regional 
importance, including those that expand regional research capabilities and 
align with regional economic development goals. To that end, NSF should 
encourage proposals that foster collaboration and partnerships between 
universities, local businesses, and state and local governments.  

11. DOE AND NSF SHOULD ADOPT NEW TOOLS AND PROCESSES 
TO ENSURE GRANTEES ARE USING HPC RESOURCES WISELY AND 
EFFICIENTLY. 
Maximizing returns on investment in HPC will require careful resource 
management informed by an understanding of how existing grantees are 
using HPC systems. DOE and NSF should require all institutions that 
receive funding for HPC resources to adopt auditing tools, such as the 
XDMoD tool, that report on how optimally they are using HPC systems. NSF 
should then also establish a regular process for reviewing center-class 
institutions and create operational follow-ups with grantees to obtain 
feedback it can use to update its HPC strategy.  



 
 

  
 

CENTER FOR DATA INNOVATION 31 

REFERENCES
 
1 . Academic Press, Dictionary of Science and Technology, (London: 

Academic Press Inc., 1992), 2135. 

2. “CPU vs. GPU: Making the Most of Both,” accessed September 15, 2020, 
https://www.intel.com/content/www/us/en/products/docs/processors/c
pu-vs-gpu.html.   

3.  Rob Latham and Rob Ross et al., “HPC I/O for Computational Scientists” 
(presented at Argonne National Laboratory, January, 2014), 
https://press3.mcs.anl.gov//atpesc/files/2017/08/ATPESC_2017_Track
-3_07_8-4_130pm_Carns-Understanding_IO.pdf.  

4.  “NEC Delivers SX-ACE Vector Supercomputers for use as the Earth 
Simulator,” last modified May 26, 2015, 
https://www.nec.com/en/press/201505/global_20150526_02.html. 

5.  “Earth Simulator System Overview, Hardware,” accessed September 18, 
2020, http://www.jamstec.go.jp/es/en/system/hardware.html. 

6.  Ibid. 

7.   Shane Cook, “Memory Handling with CUDA” in CUDA Programming: A 
Developer’s Guide to Parallel Computing with GPUs (Massachusetts: 
Elsevier, 2013), 107–202, https://doi.org/10.1016/B978-0-12-415933-
4.01001-2. 

8.  “What is an HPC cluster,” accessed September 20, 2020, 
https://www.hpc.iastate.edu/guides/introduction-to-hpc-clusters/what-is-
an-hpc-cluster. 

9.  National Research Council, Getting Up to Speed: The Future of 
Supercomputing (Washington, D.C.: The National Academies Press, 
2005), 23, https://doi.org/10.17226/11148. 

10.   “Maverick2 User Guide,” last modified October 21, 2020, 
https://portal.tacc.utexas.edu/user-guides/maverick2. 

11.  “Considerations for Managing HPC Resources,” last modified July 31, 
2019, https://insidehpc.com/2019/07/considerations-for-managing-hpc-
resources. 

12.  Stephen J. Ezell and Robert D. Atkinson, “The Vital Importance of High- 
Performance Computing to U.S. Competitiveness” (ITIF, April, 2016), 
http://www2.itif.org/2016-high-performance-
computing.pdf?_ga=2.129077516.1271053775.1598903059-
679502762.1578912342. 

13.  “Math Libraries and Interactive Tools,” accessed October 2, 2020, 
https://hpc.llnl.gov/manuals/mathematical-software/math-libraries-and-
interactive-tools; “Livermore Computing Resources and 
Environment”;https://computing.llnl.gov/tutorials/lc_resources/#Softwar
eLists. 

14.  “Tensorflow Release 1.0.0,” last modified February 11, 2017, 
https://github.com/tensorflow/tensorflow/blob/07bb8ea2379bd459832
b23951fb20ec47f3fdbd4/RELEASE.md; “Pytorch alpha-1 release,” last 
modified September 1, 2016, 
https://github.com/pytorch/pytorch/releases/tag/v0.1.1. 

15.  “Deep Learning Software,” accessed October 1, 2020, 
https://developer.nvidia.com/deep-learning-software. 

 

https://www.intel.com/content/www/us/en/products/docs/processors/cpu-vs-gpu.html
https://www.intel.com/content/www/us/en/products/docs/processors/cpu-vs-gpu.html
https://www.nec.com/en/press/201505/global_20150526_02.html
http://www.jamstec.go.jp/es/en/system/hardware.html
https://www.hpc.iastate.edu/guides/introduction-to-hpc-clusters/what-is-an-hpc-cluster
https://www.hpc.iastate.edu/guides/introduction-to-hpc-clusters/what-is-an-hpc-cluster
https://portal.tacc.utexas.edu/user-guides/maverick2
https://insidehpc.com/2019/07/considerations-for-managing-hpc-resources/
https://insidehpc.com/2019/07/considerations-for-managing-hpc-resources/
http://www2.itif.org/2016-high-performance-computing.pdf?_ga=2.129077516.1271053775.1598903059-679502762.1578912342
http://www2.itif.org/2016-high-performance-computing.pdf?_ga=2.129077516.1271053775.1598903059-679502762.1578912342
http://www2.itif.org/2016-high-performance-computing.pdf?_ga=2.129077516.1271053775.1598903059-679502762.1578912342
https://hpc.llnl.gov/manuals/mathematical-software/math-libraries-and-interactive-tools
https://hpc.llnl.gov/manuals/mathematical-software/math-libraries-and-interactive-tools
https://computing.llnl.gov/tutorials/lc_resources/#SoftwareLists
https://computing.llnl.gov/tutorials/lc_resources/#SoftwareLists
https://github.com/tensorflow/tensorflow/blob/07bb8ea2379bd459832b23951fb20ec47f3fdbd4/RELEASE.md
https://github.com/tensorflow/tensorflow/blob/07bb8ea2379bd459832b23951fb20ec47f3fdbd4/RELEASE.md
https://developer.nvidia.com/deep-learning-software


 
 

  
 

CENTER FOR DATA INNOVATION 32 

 
16.  Stephen J. Ezell and Robert D. Atkinson, “The Vital Importance of High- 

Performance Computing to U.S. Competitiveness” (ITIF, April, 2016), 
http://www2.itif.org/2016-high-performance-
computing.pdf?_ga=2.129077516.1271053775.1598903059-
679502762.1578912342. 

17.   Andrew Jones, “Should programming supercomputers be hard?” ZDNet, 
October 1, 2019, https://www.zdnet.com/article/should-programming-
supercomputers-be-hard/.  

18.  “Graduate Level Educational Competencies for Computational Science 
Overview,” accessed October 2, 2020, 
http://hpcuniversity.org/educators/gradCompetencies. 

19.  National Academies of Sciences, Engineering, and Medicine, Future 
Directions for NSF Advanced Computing Infrastructure to Support U.S. 
Science and Engineering in 2017–2020 (Washington, D.C.: The National 
Academies Press), 72, https://doi.org/10.17226/21886. 

20.  National Security Commission on Artificial Intelligence (NSCAI), First 
Quarter Recommendations (Washington, DC: NSCAI, 2020), 21, 
https://www.nscai.gov/reports. 

21.  Marie Gottschalk, “If You Want Engaged Employees, Offer Them Stability,” 
Harvard Business Review, August 15, 2019, https://hbr.org/2019/08/if-
you-want-engaged-employees-offer-them-stability. 

22.  “XSEDE Allocations Info & Policies,” last modified June 21, 2020, 
https://portal.xsede.org/allocations/policies. 

23. National Institute of Standards and Technology (NIST), The NIST Definition 
of Cloud Computing (Washington, D.C.: NIST, 2011), 2, 
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-
145.pdf. 

24.  “Cloud Computing,” accessed October 3, 2020, 
https://www.nccs.nasa.gov/services/cloud-computing.  

25.  “Amazon EC2 Overview,” accessed October 3, 2020, 
https://aws.amazon.com/ec2/. 

26.  National Academies of Sciences, Engineering, and Medicine, Future 
Directions for NSF Advanced Computing Infrastructure to Support U.S. 
Science and Engineering in 2017–2020 (Washington, D.C.: The National 
Academies Press), 112, https://doi.org/10.17226/21886. 

27.  Los Alamos National Laboratory, The ISTI Rapid Response on Exploring 
Cloud Computing 2018 (Washington D.C.: LANL, 2018), 38, 
https://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-UR-
18-31581. 

28.  Gary Andrew McGilvary et al., “Ad-hoc Cloud Computing: From Concept to 
Realization,” IEEE International Conference on Cloud Computing, (2015): 
1063–1068, doi: 10.1109/CLOUD.2015.153. 

29.  Zoltan Juhasz, “Quantitative Cost Comparison of On-premise and Cloud 
Infrastructure Based EEG Data Processing,” Cluster Computing (2020), 
https://doi.org/10.1007/s10586-020-03141-y. 

 

 

http://www2.itif.org/2016-high-performance-computing.pdf?_ga=2.129077516.1271053775.1598903059-679502762.1578912342
http://www2.itif.org/2016-high-performance-computing.pdf?_ga=2.129077516.1271053775.1598903059-679502762.1578912342
http://www2.itif.org/2016-high-performance-computing.pdf?_ga=2.129077516.1271053775.1598903059-679502762.1578912342
https://www.zdnet.com/article/should-programming-supercomputers-be-hard/
https://www.zdnet.com/article/should-programming-supercomputers-be-hard/
http://hpcuniversity.org/educators/gradCompetencies/
https://hbr.org/2019/08/if-you-want-engaged-employees-offer-them-stability
https://hbr.org/2019/08/if-you-want-engaged-employees-offer-them-stability
https://portal.xsede.org/allocations/policies
https://www.nccs.nasa.gov/services/cloud-computing
https://aws.amazon.com/ec2/
https://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-UR-18-31581
https://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-UR-18-31581


 
 

  
 

CENTER FOR DATA INNOVATION 33 

 
30.  Jaliya Ekanayake et al., “High Performance Parallel Computing with Cloud 

and Cloud Technologies,” Cloud Computing and Software Services (2010), 
doi: 10.1201/EBK1439803158-c12. 

31.  Institute of Electrical and Electronics Engineers (IEEE), IEEE 754-2019 – 
IEEE Standard for Floating-Point Arithmetic (New York: 
2019),”https://standards.ieee.org/standard/754-2019.html. 

32.  David Greaves, “Floating Point Computation” (presented at the University 
of Cambridge February, 2010), 
https://www.cl.cam.ac.uk/teaching/1011/FPComp/fpcomp10slides.pdf.  

33.  “HPL-AI Mixed-Precision Benchmark,” last modified November 13, 2019, 
https://icl.bitbucket.io/hpl-ai/. 

34.  National Academies of Sciences, Engineering, and Medicine, Future 
Directions for NSF Advanced Computing Infrastructure to Support U.S. 
Science and Engineering in 2017–2020 (Washington, D.C.: The National 
Academies Press), 81, https://doi.org/10.17226/21886. 

35. L. Carrington et al., “How Well Can Simple Metrics Represent the 
Performance of HPC Applications?” SC '05: Proceedings of the 2005 
ACM/IEEE Conference on Supercomputing (2005), doi: 
10.1109/SC.2005.33. 

36.  Ibid. 

37.  Shuai Che and Kevin Skadron, “BenchFriend: Correlating the performance 
of GPU benchmarks,” International Journal of High Performance 
Computing Applications vol.28 (2013), 238–250, 
doi:10.1177/1094342013507960. 

38.  PricewaterhouseCoopers, “Global Artificial Intelligence Study: Exploiting 
the AI Revolution” (2017), https://www.pwc.com/gx/en/issues/data-and-
analytics/publications/artificial-intelligence-study.html. 

39.  “Connected/Automated Vehicles,” accessed October 10, 2020, 
https://www.ite.org/technical-resources/topics/connected-automated-
vehicles. 

40.  Ibid. 

41.  “Autonomous & Connected Vehicles,” accessed October 10, 2020, 
https://robotics.umich.edu/research/focus-areas/autonomous-
connected-vehicles. 

42.  “How HPC, AI, and IoT Drive the Future of Smarter Vehicles,” The Next 
Platform, January 7, 2020, 
https://www.nextplatform.com/2020/01/07/how-hpc-ai-and-iot-drive-
the-future-of-smarter-vehicles. 

43.  American Automotive Policy Council, State of the U.S. Automotive Industry 
(2020), 2, 
http://www.americanautocouncil.org/sites/aapc2016/files/AAPC%20EC
R%20Q3%202020.pdf. 

44.  National Science & Technology Council and the United States Department 
of Transportation (U.S. DOT), “Ensuring American Leadership in 
Automated Vehicle Technologies” (Washington D.C.: U.S. DOT, 2020), 
https://www.transportation.gov/sites/dot.gov/files/docs/policy-
initiatives/automated-
vehicles/360956/ensuringamericanleadershipav4.pdf. 

 

https://www.cl.cam.ac.uk/teaching/1011/FPComp/fpcomp10slides.pdf
https://icl.bitbucket.io/hpl-ai/
https://www.ite.org/technical-resources/topics/connected-automated-vehicles/
https://www.ite.org/technical-resources/topics/connected-automated-vehicles/
https://www.transportation.gov/sites/dot.gov/files/docs/policy-initiatives/automated-vehicles/360956/ensuringamericanleadershipav4.pdf
https://www.transportation.gov/sites/dot.gov/files/docs/policy-initiatives/automated-vehicles/360956/ensuringamericanleadershipav4.pdf
https://www.transportation.gov/sites/dot.gov/files/docs/policy-initiatives/automated-vehicles/360956/ensuringamericanleadershipav4.pdf


 
 

  
 

CENTER FOR DATA INNOVATION 34 

 
45.  McKinsey, “Disruptive technologies: Advances that will transform life, 

business, and the global economy” (2013), 83 
https://www.mckinsey.com/~/media/McKinsey/Business%20Functions/
McKinsey%20Digital/Our%20Insights/Disruptive%20technologies/MGI_Di
sruptive_technologies_Full_report_May2013.pdf. 

46.   Cai Yiwen, “Facebook AI Exec: China Lags Behind US Due to Lack of Top 
Labs,” Sixth Tone, March 24, 2017, 
http://www.sixthtone.com/news/2109/facebook-ai-exec3A-china-lags-
behind-us-due-to-lack-of-top-labs.   

47.  Elsa B. Kania, “Chinese Military Innovation in Artificial Intelligence” 
(Center for New American Security, June 2019), 
https://www.cnas.org/publications/congressional-testimony/chinese-
military-innovation-in-artificial-intelligence; Alina Polyakova, “Weapons of 
the weak: Russia and AI-driven asymmetric warfare” (Brookings Institute, 
November 2018), https://www.brookings.edu/research/weapons-of-the-
weak-russia-and-ai-driven-asymmetric-warfare/. 

48.  Mackenzie Eaglen, “What is the Third Offset Strategy?” Real Clear 
Defense, February 16, 2019, 
https://www.realcleardefense.com/articles/2016/02/16/what_is_the_th
ird_offset_strategy_109034.html. 

49.  “About the Navy DSRC,” last modified August 13, 2020, 
https://www.navydsrc.hpc.mil/about/index.html. 

50.  Detlef Stammer et al., “Ocean Climate Observing Requirements in Support 
of Climate Research and Climate Information,” Frontiers in Marine 
Science vol.6 (2019), https://doi.org/10.3389/fmars.2019.00444. 

51.  Renee Cho, “Artificial Intelligence—A Game Changer for Climate Change 
and the Environment,” Columbia University State of the Planet Blog, June 
5, 2018, https://blogs.ei.columbia.edu/2018/06/05/artificial-
intelligence-climate-environment/. 

52.  Tiffany Trader, “DOD Orders Two AI-Focused Supercomputers from Liqid,” 
HPCWire, August 24, 2020, https://www.hpcwire.com/2020/08/24/dod-
orders-two-ai-focused-supercomputers-from-liqid/. 

53.  “23 September 1992 - Last U.S. Nuclear Test,” accessed November 2, 
2020, https://www.ctbto.org/specials/testing-times/23-september-1992-
last-us-nuclear-test. 

54.  Yoshikane, T. and Yoshimura, K., “Dispersion characteristics of 
radioactive materials estimated by wind patterns,” Scientific Reports, vol. 
8 (2018), article no. 9926, July 2, 2018, 
https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1
038%2Fs41598-018-27955-4. 

55.  Robert D. Atkinson, Mark Muro, and Jacob Whiton, “The Case for Growth 
Centers” (ITIF and Brookings 2019), http://www2.itif.org/2019-growth-
centers.pdf. 

56.  Stephen J. Ezell and Robert D. Atkinson, “The Vital Importance of High- 
Performance Computing to U.S. Competitiveness” (ITIF, April 2016), 
http://www2.itif.org/2016-high-performance-
computing.pdf?_ga=2.129077516.1271053775.1598903059-
679502762.1578912342. 

 

http://www.sixthtone.com/news/2109/facebook-ai-exec3A-china-lags-behind-us-due-to-lack-of-top-labs
http://www.sixthtone.com/news/2109/facebook-ai-exec3A-china-lags-behind-us-due-to-lack-of-top-labs
https://www.cnas.org/publications/congressional-testimony/chinese-military-innovation-in-artificial-intelligence
https://www.cnas.org/publications/congressional-testimony/chinese-military-innovation-in-artificial-intelligence
https://www.brookings.edu/research/weapons-of-the-weak-russia-and-ai-driven-asymmetric-warfare/
https://www.brookings.edu/research/weapons-of-the-weak-russia-and-ai-driven-asymmetric-warfare/
https://www.ctbto.org/specials/testing-times/23-september-1992-last-us-nuclear-test
https://www.ctbto.org/specials/testing-times/23-september-1992-last-us-nuclear-test
http://www2.itif.org/2016-high-performance-computing.pdf?_ga=2.129077516.1271053775.1598903059-679502762.1578912342
http://www2.itif.org/2016-high-performance-computing.pdf?_ga=2.129077516.1271053775.1598903059-679502762.1578912342
http://www2.itif.org/2016-high-performance-computing.pdf?_ga=2.129077516.1271053775.1598903059-679502762.1578912342


 
 

  
 

CENTER FOR DATA INNOVATION 35 

 
57.  United States Government Accountability Office (GAO), Artificial 

Intelligence in Health Care (Washington D.C.: GAO, December 2019), 
https://www.gao.gov/assets/710/703558.pdf. 

58.  Jeremy Thomas, “Lab antibody, anti-viral research aids COVID-19 
response,” Lawrence Livermore National Laboratory Blog, March 26, 
2020, https://www.llnl.gov/news/lab-antibody-anti-viral-research-aids-
covid-19-response. 

59.  Veronika Eyring et al., “Towards improved and more routine Earth system 
model evaluation in CMIP,” Earth Systems Dynamics vol.7 (2016), 813-
830, https://esd.copernicus.org/articles/7/813/2016/esd-7-813-
2016.html.  

60.  Veronika Eyring et al., “Overview of the Coupled Model Intercomparison 
Project Phase 6 (CMIP6) experimental design and organization,” 
Geoscientific Model Development vol.9 (2015), 1937–1958, 
https://gmd.copernicus.org/articles/9/1937/2016/gmd-9-1937-
2016.html. 

61.  “European Commission: HPC for Energy,” last modified July 3, 2017, 
https://cordis.europa.eu/project/id/689772. 

62.  Katie Bathea, "In its 15th year, INCITE advances open science with 
supercomputer grants to 47 projects,” Argonne Leadership Computing 
Facility Blog, November 18, 2019, https://www.alcf.anl.gov/news/its-
15th-year-incite-advances-open-science-supercomputer-grants-47-
projects. 

63.  Ibid. 

64.  “XSEDE Resources,” last modified January 17, 2019, 
https://www.xsede.org/ecosystem/resourceshttps://www.xsede.org/ecos
ystem/resources. 

65.  “SU Converter,” accessed October 20, 2020, https://www.xsede.org/su-
converter. 

66.  Ibid. 

67.  Data from Open XDMoD, University at Buffalo (J.T. Palmer et al., Open 
XDMoD: A tool for the comprehensive management of high-performance 
computing resources, Computing in Science and Engineering 17.4(2015): 
52–62, 2015). Custom query by Robert L. DeLeon.  

68.  “XSEDE Allocations Info & Policies,” last modified June 21, 2020, 
https://portal.xsede.org/allocations/policies#71.  

69.  “Bridges User Guide,” last modified June 19,2020, 
https://portal.xsede.org/psc-bridges. 

70.  Data obtained by querying XDMoD database for XSEDE SUs charged by 
NSF Directorate between 01-01-2019 to 12-31-2019. Jeffrey T. Palmer et 
al., "Open XDMoD: A Tool for the Comprehensive Management of High-
Performance Computing Resources," Computing in Science & Engineering, 
Vol 17, Issue 4, 2015, 52–62. 10.1109/MCSE.2015.68.  

71.  Kent Jones et al., “Supporting Whitworth Science faculty with High 
Performance Molecular Modelling and AI Applications, Whitworth 
University Molecular Biosciences” (presented on XSEDE User Portal, 
accessed October 2020), https://portal.xsede.org/allocations/current. 

72.  Yan Liu et al., “High-Performance Causal Inference for COVID-19 
Mitigation and Response, Oak Ridge National Laboratory” (presented on 

 

https://esd.copernicus.org/articles/7/813/2016/esd-7-813-2016.html
https://esd.copernicus.org/articles/7/813/2016/esd-7-813-2016.html
https://www.xsede.org/ecosystem/resources
https://www.xsede.org/ecosystem/resources
https://portal.xsede.org/allocations/policies#71
http://dx.doi.org/10.1109/MCSE.2015.68
https://portal.xsede.org/allocations/current


 
 

  
 

CENTER FOR DATA INNOVATION 36 

 
XSEDE User Portal, accessed October 2020), 
https://portal.xsede.org/allocations/current. 

73.  Raja Adal et al., “Applications of Computer Vision and Machine Learning 
to Historical Documents, University of Pittsburgh” (presented on XSEDE 
User Portal, accessed October 2020), 
https://portal.xsede.org/allocations/current. 

74.  Fiaz Ahmed “Investigating precipitation variability using Machine Learning 
Methods” (presented on XSEDE User Portal, accessed October 2020), 
https://portal.xsede.org/allocations/current. 

75.  “Partnerships for Innovation (PFI)” accessed October 21, 2020, 
https://www.nsf.gov/pubs/2019/nsf19506/nsf19506.htm 

76 . “NSF advances artificial intelligence research with new nationwide 
institutes,” last modified August 26. 2020, 
https://www.nsf.gov/news/special_reports/announcements/082620.jsp. 

77.  National Academies of Sciences, Engineering, and Medicine, Future 
Directions for NSF Advanced Computing Infrastructure to Support U.S. 
Science and Engineering in 2017–2020 (Washington, D.C.: The National 
Academies Press), 81, https://doi.org/10.17226/21886. 

78.  Networking & Information Technology Research & Development (NITRD), 
Supplement to the President’s FY2021 Budget (Washington D.C.: NITRD, 
2020), 23, https://www.nitrd.gov/pubs/FY2021-NITRD-Supplement.pdf. 

79. Bureau of Labor Statistics, CPI for All Urban Consumers (CPI-U), 
https://www.bls.gov/cpi/data.htm.  

80.  National Coordination Office for the Networking and Information 
Technology Research and Development program, Supplement to the 
President’s Budget FY2010 – FY2019 (actual nominal investment in High-
Capability Computing Infrastructure and Applications coverted to real 
dollar amount in 2010), 
https://www.nitrd.gov/Publications/SupplementsAll.aspx.  

81.  “The NSF Mission NSF Act of 1950,” accessed October 30, 2020, 
https://www.nsf.gov/pubs/1995/nsf9524/mission.htm. 

82.  Thomas R. Furlani et al., “Using XDMoD to facilitate XSEDE operations, 
planning and analysis,” XSEDE '13: Proceedings of the Conference on 
Extreme Science and Engineering Discovery Environment: Gateway to 
Discovery, vol.46 (2013), 1–8, 
https://doi.org/10.1145/2484762.2484763. 

83.  Thomas R. Furlani et al., “Submission in Response to NSF CI 2030 
Request for Information,” National Science Foundation, March 26, 2017, 
https://www.nsf.gov/cise/oac/ci2030/pdf/RFI-Furlani-
195_with_Attachment.pdf.  

84.  “European Commission: High Performance Computing,” accessed October 
17, 2020, https://ec.europa.eu/digital-single-market/en/high-
performance-computing. 

85.  Data obtained by querying XDMoD database for XSEDE service units by 
state based on principal investigator location between 01-01-2017 and 
12-31-2017. Jeffrey T. Palmer et al,, "Open XDMoD: A Tool for the 
Comprehensive Management of High-Performance Computing 
Resources," Computing in Science & Engineering, Vol 17, Issue 4, 2015, 
52–62. 10.1109/MCSE.2015.68. 

 

https://portal.xsede.org/allocations/current
https://portal.xsede.org/allocations/current
https://portal.xsede.org/allocations/current
https://www.nitrd.gov/pubs/FY2021-NITRD-Supplement.pdf
https://www.bls.gov/cpi/data.htm
https://www.nitrd.gov/Publications/SupplementsAll.aspx
https://www.nsf.gov/cise/oac/ci2030/pdf/RFI-Furlani-195_with_Attachment.pdf
https://www.nsf.gov/cise/oac/ci2030/pdf/RFI-Furlani-195_with_Attachment.pdf
http://dx.doi.org/10.1109/MCSE.2015.68


 
 

  
 

CENTER FOR DATA INNOVATION 37 

 
86.  John V. Lombardi, Craig W. Abbey, and Diane D. Craig, “The Top American 

Research Universities,” The Center for Measuring University Performance 
(CMUP) 2018 Annual Report, (CMUP, 2019), 13–16, 
https://mup.umass.edu/sites/default/files/mup-2018-top-american-
research-universities-annual-report.pdf.  

87.  “About PSC,” accessed October 14, 2020, 
https://www.psc.edu/homepage/about-psc.  

88.  “Category II: Unlocking Interactive AI Development for Rapidly Evolving 
Research,” accessed October 25, 2020, 
https://www.nsf.gov/awardsearch/showAward?AWD_ID=2005597&Histo
ricalAwards=false.  

89.  “About the MGHPCC,” accessed October, 22, 2020, 
https://www.mghpcc.org/about/about-the-mghpcc/.   

90.  “Resources,” accessed October, 22, 2020, 
https://www.mghpcc.org/resources/.  

91.  “About Lincoln Laboratory,” accessed October, 22, 2020, 
https://www.ll.mit.edu/about. 

92.  Kylie Foy, ”Lincoln Laboratory's new AI supercomputer is the most 
powerful at a university,” Lincoln Laboratory Newspage, September 26, 
2019, https://www.ll.mit.edu/news/lincoln-laboratorys-new-ai-
supercomputer-most-powerful-university.  

93.  “About NCSA,” accessed October, 23, 2020, 
http://www.ncsa.illinois.edu/about. 

94.  “Comet User Guide,” accessed October, 23, 2020, 
https://www.sdsc.edu/support/user_guides/comet.html. 

95.  Susan K. Urahn et al., “Two Decades of Change in Federal and State 
Higher Education Funding” (Pew Trusts, October 2019), 
https://www.pewtrusts.org/en/research-and-analysis/issue-
briefs/2019/10/two-decades-of-change-in-federal-and-state-higher-
education-funding.  

96.  “NCAR: Who We Are,” accessed October 24, 2020, 
https://ncar.ucar.edu/who-we-are. 

97.  “Landmark $60M gift to establish major initiative in artificial intelligence 
at Indiana University,” Indiana University Bloomington Newspage, October 
18, 2019, https://luddy.indiana.edu/research/research-areas/artificial-
intelligence.html.   

98.  Ibid.   

99.  “About Big Red 200 at IU,” last modified November 2. 2020, 
https://kb.iu.edu/d/brcc.   

100.  “Artificial Intelligence & Machine Learning,” accessed November 4, 2020, 
https://ic.gatech.edu/content/artificial-intelligence-machine-learning.  

101.  John Toon, “National Labs, Georgia Tech, Collaborate on AI Research,” 
Georgia Tech News Center, November 5, 2019, 
https://news.gatech.edu/2019/11/05/national-labs-georgia-tech-
collaborate-ai-research.  

102.  “Scientific Computing and Imaging History,” accessed November 15, 
2020, https://www.sci.utah.edu/home.html. 

 

https://mup.umass.edu/sites/default/files/mup-2018-top-american-research-universities-annual-report.pdf
https://mup.umass.edu/sites/default/files/mup-2018-top-american-research-universities-annual-report.pdf
https://www.psc.edu/homepage/about-psc
https://www.nsf.gov/awardsearch/showAward?AWD_ID=2005597&HistoricalAwards=false
https://www.nsf.gov/awardsearch/showAward?AWD_ID=2005597&HistoricalAwards=false
https://www.mghpcc.org/about/about-the-mghpcc/
https://www.mghpcc.org/resources/
https://www.ll.mit.edu/about
https://www.ll.mit.edu/news/lincoln-laboratorys-new-ai-supercomputer-most-powerful-university
https://www.ll.mit.edu/news/lincoln-laboratorys-new-ai-supercomputer-most-powerful-university
http://www.ncsa.illinois.edu/about
https://www.sdsc.edu/support/user_guides/comet.html
https://www.pewtrusts.org/en/research-and-analysis/issue-briefs/2019/10/two-decades-of-change-in-federal-and-state-higher-education-funding
https://www.pewtrusts.org/en/research-and-analysis/issue-briefs/2019/10/two-decades-of-change-in-federal-and-state-higher-education-funding
https://www.pewtrusts.org/en/research-and-analysis/issue-briefs/2019/10/two-decades-of-change-in-federal-and-state-higher-education-funding
https://luddy.indiana.edu/research/research-areas/artificial-intelligence.html
https://luddy.indiana.edu/research/research-areas/artificial-intelligence.html
https://kb.iu.edu/d/brcc
https://ic.gatech.edu/content/artificial-intelligence-machine-learning
https://news.gatech.edu/2019/11/05/national-labs-georgia-tech-collaborate-ai-research
https://news.gatech.edu/2019/11/05/national-labs-georgia-tech-collaborate-ai-research
https://www.sci.utah.edu/home.html


 
 

  
 

CENTER FOR DATA INNOVATION 38 

 
103.  Ben Shneiderman, The New ABCs of Research: Achieving Breakthrough 

Collaborations (Oxford: Oxford University Press, 2016), 320. 

104.  “Resources available at CHPC, HPC Clusters,” accessed November 18, 
https://www.chpc.utah.edu/resources/HPC_Clusters.php.  

105.  Mark Muro, Jacob Whiton, and Robert Maxim, “What jobs are affected by 
AI? Better-paid, better-educated workers face the most exposure,” 
(Brookings, November 2019), 19, 
https://www.brookings.edu/research/what-jobs-are-affected-by-ai-better-
paid-better-educated-workers-face-the-most-exposure/. 

106.  “Arkansas High Performance Computing Center: Resources,” accessed 
November 23, 2020, https://hpc.uark.edu/hpc-resources/index.php. 

107.  ”University of South Dakota: High Performance Computing,” accessed 
November 23, 2020, https://www.usd.edu/technology/research/high-
performance-computing.  

108.  Addie Slanger and Montana Kaimin, “Gadgets galore: UM is upgrading to 
new supercomputer,” Montana Kaimin College News Blog, September 12, 
2019, http://www.montanakaimin.com/news/gadgets-galore-um-is-
upgrading-to-new-supercomputer/article_ea53fe1a-d583-11e9-ac5c-
4f8109aa0009.html.  

109.  “NSF EPIC Press Release,” last modified April 2005, 
http://mvhs.shodor.org/epic/pressrelease.html.   

110.  “About Us: NSF INCLUDES,” accessed November 6, 2020, 
https://www.includesnetwork.org/new-a/about-us. 

111. “NSF INCLUDES Alliance: Computing Alliance of Hispanic-Serving 
Institutions,” accessed November 6, 2020, 
https://www.nsf.gov/awardsearch/showAward?AWD_ID=1834620&Histo
ricalAwards=false. 

112. “BPC-A: Collaborative Research: Alliance between Historically Black 
Universities and Research Universities for Collaborative Education and 
Research in Computing Disciplines,” accessed November 6, 2020, 
”https://www.nsf.gov/awardsearch/showAward?AWD_ID=0540561.   

113. “A Strong but Sensitive Computing Initiative for Native American 
Communities,” accessed November 6, 2020, 
https://www.sdsc.edu/pub/envision/v16.2/native-americans.html.  

114.  Qian, Xiaoqing and Deng, Z. T., “Alliance for Computational Science 
Collaboration: HBCU Partnership at Alabama A&M University Continuing 
High Performance Computing Research and Education at AAMU,” 
November 2009, doi:10.2172/967143. 

115. Athina Frantzana, “Women’s representation and experiences in the high 
performance computing community,” PhD thesis, The University of 
Edinburgh, 2019, https://era.ed.ac.uk/handle/1842/36127.  

116. Eitan Frachtenberg and Rhody Kaner, “Representation of Women in High-
Performance Computing Conferences,” EasyChair no. 2799, February 28, 
2020, https://easychair.org/publications/preprint_open/2nVv. 

117. “NSF INCLUDES: Mississippi Alliance for Women in Computing (MAWC),” 
accessed November 6, 2020, 
https://www.nsf.gov/awardsearch/showAward?AWD_ID=1649312&Histo
ricalAwards=false  

 

https://www.chpc.utah.edu/resources/HPC_Clusters.php
https://www.brookings.edu/research/what-jobs-are-affected-by-ai-better-paid-better-educated-workers-face-the-most-exposure/
https://www.brookings.edu/research/what-jobs-are-affected-by-ai-better-paid-better-educated-workers-face-the-most-exposure/
https://hpc.uark.edu/hpc-resources/index.php
https://www.usd.edu/technology/research/high-performance-computing
https://www.usd.edu/technology/research/high-performance-computing
http://www.montanakaimin.com/news/gadgets-galore-um-is-upgrading-to-new-supercomputer/article_ea53fe1a-d583-11e9-ac5c-4f8109aa0009.html
http://www.montanakaimin.com/news/gadgets-galore-um-is-upgrading-to-new-supercomputer/article_ea53fe1a-d583-11e9-ac5c-4f8109aa0009.html
http://www.montanakaimin.com/news/gadgets-galore-um-is-upgrading-to-new-supercomputer/article_ea53fe1a-d583-11e9-ac5c-4f8109aa0009.html
http://mvhs.shodor.org/epic/pressrelease.html


 
 

  
 

CENTER FOR DATA INNOVATION 39 

 
118. “Blue Waters Awards 21 Broadening Participation Allocations,” HPCWire, 

April 26, 2018, https://www.hpcwire.com/off-the-wire/blue-waters-
awards-21-broadening-participation-allocations.  

119. Louise A. Lyon and Jeffrey Forbes, “Lighting the Path: From Community 
College to Computing Careers” (Association for Computing Machinery, 
October 2018), 
https://www.acm.org/binaries/content/assets/education/lighting-the-
path-from-community-college-to-computing-careers.pdf. 

120. “National Center of Excellence for High Performance Computing 
Technology,” accessed November 6, 2020, 
https://www.nsf.gov/awardsearch/showAward?AWD_ID=0202452.  

121.  National AI Research Resource Task Force Act of 2020, H.R.7096, 116th 
Cong. (2020). 



 
 

  
 

CENTER FOR DATA INNOVATION 40 

 
ABOUT THE AUTHOR 

Hodan Omaar is a policy analyst at the Center for Data Innovation. 
Previously, she worked as a senior consultant on technology and risk 
management in London and as a crypto-economist in Berlin. She has an 
MA in Economics and Mathematics from the University of Edinburgh. 

ABOUT THE CENTER FOR DATA INNOVATION 

The Center for Data Innovation is the leading global think tank studying 
the intersection of data, technology, and public policy. With staff in 
Washington, D.C. and Brussels, the center formulates and promotes 
pragmatic public policies designed to maximize the benefits of data-
driven innovation in the public and private sectors. It educates 
policymakers and the public about the opportunities and challenges 
associated with data, as well as technology trends such as predictive 
analytics, open data, cloud computing, and the Internet of Things. The 
center is a nonprofit, nonpartisan research institute proudly affiliated with 
the Information Technology and Innovation Foundation.  

contact: info@datainnovation.org 
 

datainnovation.org 
 

 


	What Is High-Performance Computing?
	Increasing Access to HPC Requires Increasing Access to Hardware, Software, and Expertise
	Hardware
	Software
	Expertise

	Cloud Computing Is Best Suited to Highly Parallel Applications Or Those With variable Demand
	Measuring HPC Performance Accurately Requires Suitable Benchmarks
	Increasing Access to HPC is Important for Maintaining U.S. Leadership in AI
	Economy
	National Security
	Society

	Academic HPC Demand Far Outweighs Supply
	NSF Needs To Increase Its HPC Investment
	The Government Should Invest In States Where HPC Usage Is Low But AI Research Is High
	Recommendations
	1. congress should Provide a total of $10 billion in HPC funding over the next five years to NSF and DOE To Match Supply to Demand.
	2. nsf should Support the long tail of Potential HPC users who represent the majority of researchers.
	3. DOE and NSF should Allocate HPC compute time More efficiently.
	4. DOE and nsf should provide access to hpc experts to improve researcher productivity.
	5. NSF and DOE should Increase access to HPC for minority-serving institutions.
	6. NSF and DOE should Increase access to HPC for women.
	7. NSF should provide funding to develop hpc curricula at two-year Colleges that enable seamless Transfer into four-year colleges.
	8. nsf should diversify the portfolio of HPC resources it makes available to AI researchers.
	9. NSF should Establish and Publish Roadmaps that articulate what future investments it will make.
	10. nsf should foster more public-private partnerships.
	11. doe and nsf should Adopt New Tools and Processes to ensure grantees are using HPC resources wisely and efficiently.

	References

