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Concerns about the energy used by digital technologies 
are not new. Near the peak of the dot-com boom in the 
1990s, a Forbes article lamented, “Somewhere in 
America, a lump of coal is burned every time a book is 
ordered online.”1 The authors of the article, which became 
widely cited in subsequent years in debates about energy 
policy, estimated that “half of the electric grid will be 
powering the digital-Internet economy within the next 
decade.”2 However, the estimate was wrong, with errors in 
both its facts and methodology.3 In hindsight, there is no 
longer any dispute, as the International Energy Agency 
(IEA) estimates that today’s data centers and data 
transmission networks “each account for about 1–1.5% of 
global electricity use.”4 

This mistake was not an isolated event. Numerous headlines have 
appeared over the years predicting that the digital economy’s energy 
footprint will balloon out of control.5 For example, as the streaming wars 
kicked off in 2019—with Apple, Disney, HBO, and others announcing video 
streaming subscription services to compete with Netflix, Amazon, and 
YouTube—multiple media outlets repeated claims from a French think tank 
that “the emissions generated by watching 30 minutes of Netflix is the 
same as driving almost 4 miles.”6 But again, the estimate was completely 
wrong (it is more like driving between 10 and 100 yards), resulting from a 
mix of flawed assumptions and conversion errors, which the think tank 
eventually corrected a year later.7 

With the recent surge in interest in artificial intelligence (AI), people are 
once again raising questions about the energy use of an emerging 
technology. In this case, critics speculate that the rapid adoption of AI 
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combined with an increase in the size of deep learning models will lead to 
a massive increase in energy use with a potentially devastating 
environmental impact.8 However, as with past technologies, many of the 
early claims about the consumption of energy by AI have proven to be 
inflated and misleading. This report provides an overview of the debate, 
including some of the early missteps and how they have already shaped 
the policy conversation, and sets the record straight about AI’s energy 
footprint and how it will likely evolve in the coming years. It recommends 
that policymakers address concerns about AI’s energy consumption by 
taking the following steps: 

 Develop energy transparency standards for AI models. 

 Seek voluntary commitments on energy transparency for 
foundation models. 

 Consider the unintended consequences of AI regulations on 
energy use. 

 Use AI to decarbonize government operations. 

THE FACTS ABOUT AI’S ENERGY USAGE AND CARBON EMISSIONS 
Creating accurate estimates of the energy use and carbon emissions of AI 
systems over their lifetimes is challenging because these calculations 
depend on many complex factors, including details about the chips, cooling 
systems, data center design, software, workload, and energy sources used 
for electricity generation. This problem is not unique to AI. As a group of 
energy researchers described the problem in an article in the Annual 
Review of Energy and the Environment: 

Creating credible estimates of electricity requirements for information 
technology is fraught with difficulty. The underlying data are not known 
with precision, the empirical data are limited, the most useful data are 
often proprietary, and the technology is changing so rapidly that even 
accurate data are quickly obsolete.9 

However, several studies have attempted to quantify the current and future 
energy demands and carbon emissions of AI systems. Unfortunately, some 
of the initial estimates have fallen into the same trap as past early studies 
about the energy use of digital technologies and have produced misleading 
estimates. These studies generally consider the energy needed for an AI 
system over its lifetime in two stages: 1) training the AI model; and 2) using 
the AI model to respond to specific queries—a process called “inference.”  

Training AI Models 
Researchers at the University of Massachusetts Amherst estimated in 
2019 the carbon emissions of several AI models, one of the first major 
studies of its kind.10 The study found that BERT—which at the time was 
Google’s state-of-the-art large language model (LLM)—emitted 
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approximately 1,438 pounds of carbon dioxide (CO2) during 79 hours of 
training using 64 advanced graphics processing units (GPUs), the chips 
commonly used for training AI models because of their superior parallel 
processing capabilities. To put this in perspective, a roundtrip flight from 
New York to San Francisco creates approximately 2,000 pounds of CO2 

emissions per passenger. The researchers also estimated carbon 
emissions for training an AI model for neural architecture search (NAS), a 
technique for automatically finding one or more neural network 
architectures for a given task—one of the most computationally complex 
problems in machine learning. Specifically, they evaluated the energy 
usage of a NAS used to create a better English-German machine 
translation model.11 The researchers estimated that training the model in 
question generated 626,155 pounds of CO2 emissions (roughly equivalent 
to 300 roundtrip flights from the East Coast to the West Coast).12  

Not surprisingly, given journalistic tendencies to skew toward negative 
coverage of tech, virtually all the headlines in the popular media focused 
on this latter estimate despite its narrow use case.13 Even respected 
scientific news outlets such as MIT Technology Review ran such headlines 
as “Training a single AI model can emit as much carbon as five cars in their 
lifetimes.”14 These articles suggested that the massive energy needed to 
train this particular AI model was normal despite this estimate clearly 
referring to an atypical example. It would be like an automotive news outlet 
running an article that suggested “driving a car emits as much carbon as 
an airplane” based only on a study that looked at the environmental impact 
of a flying car prototype.  

Moreover, both the original research paper and the subsequent news 
articles often noted that while the large AI model outperformed existing 
ones at language translation benchmarks, the improvements were only 
marginal. The implication was that AI researchers are making trivial 
performance improvements at the expense of non-trivial amounts of 
carbon emissions. Indeed, other AI researchers made this point explicit in a 
widely read paper “On the Dangers of Stochastic Parrots: Can Language 
Models Be Too Big?”15 They argued that it is “environmental racism” for 
wealthy Western nations to deploy ever-larger AI models because these AI 
systems will have negative impacts on poor communities in the Global 
South. Specifically, they wrote:  

Is it fair or just to ask, for example, that the residents of the Maldives 
(likely to be underwater by 2100) or the 800,000 people in Sudan 
affected by drastic floods pay the environmental price of training and 
deploying ever larger English [language models], when similar large-
scale models aren’t being produced for Dhivehi or Sudanese Arabic?16 

Given the charges—that training AI systems is not only dangerous for the 
environment but also an overt act of racism—it is not surprising that many 
policymakers have raised questions about AI’s energy consumption. 
However, the headline-making estimate in the 2019 study was wildly 
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incorrect—just like many prior claims about the oversized energy footprint 
of digital technologies. The University of Massachusetts Amherst 
researchers had made several false assumptions that grossly inflated their 
estimates both for the total energy used and the carbon emissions. In 
response to the 2019 study, the researchers involved in the NAS model 
provided a detailed summary of the energy use and carbon emissions from 
their work, noting why the outside researchers’ estimates were wrong. The 
actual emissions were 88 times smaller than the earlier study’s estimate.17 
Unfortunately, the popular media paid little attention to correcting the 
record or noting the new findings, and so the initial impressions have 
lived on.  

Researchers have published multiple studies in subsequent years 
estimating the energy needed to train many well-known AI models as well 
as their carbon emissions. As shown in table 1, while larger models 
generally require more energy usage than smaller ones do, the exact 
figures vary significantly across different AI models. For example, 
researchers estimate that training GPT-3—the 175 billion parameter AI 
model used in the popular ChatGPT application—created 552 tCO2 
emissions, but comparable AI models including OPT (a 175 billion 
parameter AI model created by Meta) and Gopher (a 280 billion parameter 
AI model created by Google) have significantly smaller carbon footprints. 
Moreover, the efficiency of training AI models continues to improve. For 
example, 18 months after GPT-3, Google produced GLaM, an LLM with 1.2 
trillion parameters. Despite GLaM being nearly 7 times larger than GPT-3 
and outperforming the other AI model, GLaM required 2.8 times less 
energy to train.18 Finally, the energy mix used to power the data center 
where developers train an AI model impacts its carbon emissions. For 
example, the developers of BLOOM used a French data center powered by 
nuclear energy, which reduced its carbon footprint.19 

Despite the new research, groups critical of AI have repeatedly cited the 
initial incorrect study in their demands for policymakers to reduce 
investment in large-scale computing resources. For example, the American 
Civil Liberties Union (ACLU) sent a letter to the Office of Science and 
Technology Policy (OSTP) in October 2021 complaining about the 
“environmental costs” of the White House’s planned National AI Research 
Resource (NAIRR) and arguing that “the NAIRR should focus on offering an 
alternative to the data- and compute-hungry applications that are the focus 
of many industry and research labs.”20 Similarly, the Center for AI and 
Digital Policy falsely claimed in 2022 that “AI-enabled systems require 
exponentially rising computing power. This increase in computing power 
requires substantial energy consumption, generating a huge carbon 
footprint and upending the green effects of digitalization.”21 In each case, 
they made these claims despite overwhelming evidence showing they were 
misleading and overblown. 
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Table 1: Estimated energy demand of training various AI models 

Model 
# of 

Parameters 
Chips  
(model x #) Hours 

Energy 
(MWh) 

CO2 
Emissions 

(metric 
tons) 

Estimate 
Source 

BERT 0.1B V100x64 79 1.5 0.7 Strubell et 
al., 201922 

GPT-2 1.5B TPUv3x32 168 1.7* 0.7* Strubell et 
al., 201923 

Llama 2 7B A100x(n/a) N/A 74* 31.2 Meta, 
202324 

Llama 2 13B A100x(n/a) N/A 147* 62.4 Meta, 2023 

Llama 2 70B A100x(n/a)  N/A 688* 291.4 Meta, 2023 

LaMDA 137B TPUv3x1024 1,385 451 26 Thoppilan et 
al., 202225 

GPT-3 175B V100x10000 355 1,287 552 Patterson et 
al., 202126 

OPT 175B A100x992 N/A N/A 75 Zhang et al., 
202227 

BLOOM 176B A100x384 2,820* 433 24.7 Luccioni et 
al., 202228 

Gopher 280B TPUv3x4096 920 1,151* 380 Rae et al, 
202229 

PaLM 540B 
TPUv4x6144 

TPUv4x3072 

1200 

326 
3,436* 271.4 Chowdery et 

al., 202230 

GLaM 1,162B TPUv4x(n/a) N/A 456 40 Patterson et 
al., 202231 

GPT-4 1,800B A100x25000 2280 N/A N/A Walker, 
202332 

* Inferred based on available data, see appendix for details 

Using AI Models 
Despite the attention from policymakers and the media on the energy costs 
of training AI models, multiple studies have concluded that most of the 
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energy costs associated with AI systems come from using AI models—a 
process known as “inference” (because the model is inferring results 
based on a given input). For example, Amazon Web Services estimates that 
90 percent of the cost of an AI model comes from inference.33 Similarly, a 
study from Schneider Electric estimates that 80 percent of the AI workload 
in data centers in 2023 is from inference and 20 percent is for training.34 
Finally, a study by researchers at Meta notes that the exact breakdown 
between training versus inference varies across use cases. For LLMs, they 
estimate that inference is associated with 65 percent of the carbon 
footprint, but for recommendation models where parameters must be 
updated frequently based on new data, they estimate an even split 
between training and inference.35  

Multiple factors impact the amount of energy used during inference, 
including the type of task and the AI model. As shown in table 2, the energy 
requirements for inference can vary significantly by task. For example, 
using an AI model to classify text is generally computationally less intensive 
(and thus uses less energy) than using AI to generate an image.36 Different 
AI models also have different energy costs, and within specific models 
(e.g., Llama 2 7B versus Llama 2 70B), a larger number of parameters 
generally requires more energy for inference.  

Table 2: Average energy use per 1,000 queries by task37 

Task kWh 

Text classification 0.002 

Image classification 0.007 

Object detection 0.038 

Text generation 0.047 

Summarization 0.049 

Image generation 2.907 

 

Given that training a particular AI model incurs a one-time cost, whereas 
using an AI model continues to consume energy over time, it makes sense 
that most of the energy used for AI will eventually come from inference. It 
also means that the energy requirements for running AI models will have a 
significant impact on the overall energy use for AI systems. While most 
critics have focused on the energy used to train AI models, some people 
have expressed concern about the energy used during inference.38 For 
example, writing in the October 2023 edition of the journal Joule, one 
researcher estimated that interacting with an LLM requires approximately 
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10 times as much energy as conducting a typical web search query, and 
extrapolated from that estimate to conclude that “the worst-case scenario 
suggests Google’s AI alone could consume as much electricity as a country 
such as Ireland (29.3 TWh per year).”39 

There are many reasons to doubt that such a “worst-case” scenario is on 
the near horizon. In 2022, Google’s total global energy consumption across 
the entire company was 21.8 TWh. 40 For the worst-case prediction to be 
true, Google’s energy use for AI alone would have to more than exceed its 
current total global energy use. It is true that the company’s energy 
consumption has grown over time, particularly from its data centers, as its 
business has grown. For example, Google’s data centers used about 3 TWh 
more electricity in 2022 than the year before.41 But while its overall energy 
usage has grown, for the three years between 2019 and 2021, the 
proportion of energy it used for machine learning remained constant—
between 10 to 15 percent of its total energy consumption—with 
approximately 60 percent of that used for inference.42  

One explanation for the relatively constant proportion of energy used for 
inference is the improvements seen in AI models and hardware. Indeed, as 
shown in table 3, both performance and efficiency tend to improve over 
time. The table shows that over a few years, the accuracy of computer 
vision AI models improved significantly. In addition, the energy 
requirements for inference across these models generally decreased with 
the release of a newer chip. As noted in one recent study of the energy 
used for inference in AI models, “when a SOTA [state-of-the-art] model is 
released it usually has a huge number of FLOPs [floating point operations], 
and therefore consumes a large amount of energy, but in a couple of years 
there is a model with similar accuracy but with much lower number of 
FLOPs.”43 In other words, the newest AI models may not be particularly 
efficient by design because researchers are focusing on performance 
improvements, but over time, researchers will address efficiency.  

Table 3: Energy consumption for inference of deep neural 
networks used for computer vision for two different GPUs44 

 

Year 
Top-1 Accuracy 

(ImageNet) 

P100, 
released June 

2016 
(Joules) 

V100, 
released June 

2017 
(Joules) 

AlexNet 2012 56.52 0.033 0.023 

GoogLeNet 2014 69.77 0.077 0.055 

Vgg16 2014 71.59 0.542 0.373 

ResNet50 2015 75.30 0.179 0.132 
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WHAT AI ENERGY FORECASTS GET WRONG 
One reason forecasts about future energy demands from AI are so high is 
they use inaccurate or misleading measurements, as described previously. 
Another reason is the forecasts ignore the practical economic and 
technical realities that come with widespread commercialization of AI. 

The Energy Use of AI Is Limited by Economic Considerations 
Many of the high-end estimates for AI energy use are impractical because 
of the costs involved. Buying more chips, building more data centers, and 
powering those data centers is expensive. For example, as even the author 
of the prediction that Google’s AI alone might consume 29.3 TWh annually 
admitted, reaching this level would require a $100 billion investment in 
chips along with billions more in operating costs for the data center and 
electricity.45 Even large tech companies would find it unsustainable to pay 
for such massive amounts of computing. Businesses are profit-seeking 
enterprises and computing costs money; therefore, they are not going to 
offer services for long that cost more to operate than they receive in 
revenue. Either the energy costs for using AI will come down or how 
companies deploy AI will be limited by cost factors.  

The Rate of Performance Improvements in AI Will Decline Over Time 
AI models have improved significantly in the past few years. For example, 
OpenAI’s LLM model, GPT-4, released in March 2023, can pass many 
popular exams designed for humans, such as the SAT, GRE, LSAT, and AP 
tests for a variety of subjects.46 These results are a substantial 
improvement over its earlier model released the prior year. While AI still 
cannot perform many tasks as well as humans, such as abstract 
reasoning, now that some AI models perform so highly on many 
benchmarks, there is substantially less opportunity for improvement in 
certain domains. As a result, many developers will likely focus more on 
optimizing their AI models rather than squeezing out ever-smaller 
improvements in accuracy because they will not receive a return on 
investment for building and operating larger models. 

Future Innovations Will Improve AI’s Energy Efficiency 
The history of computing is one of continuous innovation, and these 
innovations extend to energy efficiency. For example, over the past decade, 
demands on global data centers have increased substantially even as the 
energy intensity of data centers has decreased by approximately 20 
percent annually.47 Between 2010 and 2018, there was a 550 percent 
increase in compute instances and a 2,400 percent increase in storage 
capacity in global data centers, but only a 6 percent increase in global data 
center energy use.48 These energy efficiency gains came from 
improvements in hardware, virtualization, and data center design, and they 
are part of the reason that cloud computing has been able to scale. 
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Similar trends are already appearing in AI. As one recent paper notes, 
“Many studies report that the size of neural networks is growing 
exponentially. However, this does not necessarily imply that the cost is also 
growing exponentially, as more weights could be implemented with the 
same amount of energy, mostly due to hardware specialization but 
especially as the energy consumption per unit of compute is decreasing.”49 
Improvements in hardware and software will likely keep the pace of energy 
growth from AI in check. Chipmakers continue to create more efficient 
GPUs for AI. For example, Nvidia’s recent transition from one generation of 
GPUs to another resulted not only in significantly faster processing but also 
nearly doubled energy efficiency.50 Likewise, researchers continue to 
experiment with techniques, such as pruning, quantization, and distillation, 
to create more compact AI models that are faster and more energy efficient 
with minimal loss of accuracy.51 These types of advancements are one 
reason the proportion of energy Google uses for AI has remained constant 
in recent years despite machine learning growing to account for 70 to 80 
percent of the compute used at the company.52 Indeed, as one researcher 
succinctly put it, “[AI’s] energy consumption is not skyrocketing, contrary to 
commonly expressed fears.”53 

AI’s Energy Footprint Ignores Substitution Effects 
Discussing the energy usage trends of AI systems can be misleading 
without considering the substitution effects of the technology. Many digital 
technologies help decarbonize the economy by substituting moving bits for 
moving atoms. For example, sending an email replaces mailing a letter, 
streaming a movie replaces renting a DVD, and participating in a video 
conference replaces traveling to an in-person meeting. AI will have a similar 
impact over time, both by further digitalizing many activities (such as by 
improving the quality of video calls) and by using AI to complete tasks more 
efficiently than using human labor.  

One study in 2023 estimates the carbon footprint of using AI versus using 
a human for writing a page of text or creating an illustration. After 
considering the carbon emissions for different AI models (ChatGPT, 
BLOOM, Midjourney, and DALLE-2) and comparing workers in the United 
States and India, the researchers found “AI writing a page of text emits 
130 to 1,500 times less CO2e than a human doing so” and “AI creating an 
image emits 310 to 2,900 times less.”54 Of course, since using AI does not 
eliminate humans—they still exist and eat, breathe, etc.—using AI does not 
eliminate these carbon emissions. But AI does eliminate the carbon 
emissions from the devices humans use for these tasks, such as laptop or 
desktop computers. As shown in table 4, these savings can be substantial; 
however, there are limits to generalizing these findings. For example, by 
making it easier to produce text and images, the volume of activity may 
increase. Nevertheless, these findings show how, holding all else equal, 
using AI to substitute for human labor can reduce carbon emissions in 
certain cases. 
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Table 4: Carbon footprint (grams CO2e) for using a human (in the 
United States) versus AI (BLOOM/Midjourney) for certain tasks 

 AI Laptop Desktop Human 

Writing a page of text 0.95  27 72 1,400 

Creating an image 1.90 100 280 5,500 

HOW AI’S ENERGY USE FITS INTO THE BIGGER PICTURE 
The debate about AI’s energy use is part of a larger debate about how to 
address global climate change. Within that context, there are important 
factors policymakers should keep in mind. 

AI Will Play an Important Role in Addressing Climate Change 
There are many opportunities to use AI to reduce carbon emissions, 
support clean energy technologies, and address climate change. These 
opportunities span multiple industries, including the transportation, 
agriculture, and energy sectors. For example, AI is crucial for integrating 
renewable energy sources such as wind and solar into the electric grid by 
using data points to forecast supply and demand. Likewise, utilities are 
using AI for predictive maintenance of energy assets, managing and 
controlling grids, and setting dynamic pricing—all critical elements for an 
efficient electric grid.55  

AI can also help make sense of complex climate data from sensors and 
satellites, such as changing sea levels, surface temperatures, and rainfall, 
to create better forecasts and address risks of climate change. For 
example, AI can detect methane emissions from satellite data, allowing 
regulators to more effectively monitor industry.56 Similarly, farmers can use 
AI for precision agriculture, reducing their use of fertilizer and water and 
their associated environmental costs.57  

Already businesses, governments, and consumers are using AI to operate 
more efficiently. AI is a key part of creating smart cities that use AI to 
operate efficient buildings, roads, waterways, and more.58 For example, in 
California, the government is using AI to monitor over a thousand cameras 
to detect and respond to wildfires quickly, reducing carbon emissions that 
come from these fires.59 And AI can enable firms to optimize industrial 
processes, reduce waste, and use energy more efficiently, thereby reducing 
their carbon intensity.60 For example, logistics providers use AI to optimize 
delivery routes, thereby reducing fuel consumption of their fleets.61 And in 
the consumer space, tools such as the Nest smart thermometers saved 
customers 113 billion KWh between 2011 and 2022 and more efficient 
driving from Google Maps has reduced carbon emissions by 1.2 million 
metric tons.62  
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As AI matures, policymakers should continue to look to the technology as a 
key tool for addressing climate change. 

There Is No Unique Market Failure for AI’s Energy Use 
Solving the global climate challenge will require transitioning to clean 
energy technologies that have a price and performance on par with dirty 
ones.63 In the interim, any activity that uses energy has an environmental 
impact, and AI’s use of energy is no different. However, there are no unique 
market failures associated with AI’s use of energy that would lead to 
greater environmental impact than alternative uses would. A kilowatt-hour 
used for AI is no different than a kilowatt-hour used for watching television, 
microwaving popcorn, powering lights, or any other activity. Indeed, as 
noted previously, in many cases, AI applications will be used as a 
substitute for less energy-efficient activities and to address climate 
change. In both cases, those who consume energy must pay for it, and 
rational actors will generally seek to minimize these costs. While such 
costs may not include negative externalities associated with energy use, 
that problem is not unique to AI and cannot be addressed for AI alone.  

Large Tech Companies Have Made Bold Net-Zero Commitments 
Large tech companies are at the forefront of AI, and these are the same 
companies that have made some of the boldest commitments among 
corporations to reducing their carbon footprints. Consider the following: 

 Google (now Alphabet) became carbon neutral in 2007, the first 
major company to do so.64 A decade later, it became the first major 
company to purchase enough renewable energy to match its 
electricity consumption.65 And, in 2020, it purchased carbon 
offsets to eliminate the company’s entire carbon legacy.66 The 
company continues to press forward and has committed to 
operating all its data centers and campuses on carbon-free energy 
by 2030.67 

 Amazon co-founded The Climate Pledge in 2019, whereby 
companies commit to net-zero carbon emissions by 2040, 10 years 
ahead of the Paris Agreement.68 And, in 2022, Amazon reported 
that 90 percent of the electricity it consumed came from renewable 
sources, and it was on track to reach 100 percent by 2025, five 
years ahead of its goal of 2030.69  

 Microsoft has committed to be carbon negative by 2030 and 
eliminate its company’s entire carbon legacy by 2050.70 It has also 
committed to using 100 percent renewable energy by 2025.71 

 Facebook (now Meta) reached zero carbon emissions in its direct 
operations (i.e., data centers and offices) in 2020 and has pledged 
to reach net-zero emissions across its entire value chain by 
2030.72 
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These companies have remained publicly committed to these pledges even 
as they lead in the development and deployment of AI. Indeed, their net-
zero pledges are one of the reasons these companies must carefully 
consider the efficiency of the AI models they train and deploy. 

HOW POLICYMAKERS SHOULD ADDRESS AI’S ENERGY USE 
Witnessing the rapid advancements in AI, policymakers around the world 
are considering whether and how they should regulate the technology, 
including its energy usage. For example, UNESCO’s “Recommendation on 
the Ethics of AI”—which was adopted by 193 member states in November 
2021—states, “Member States and business enterprises should assess the 
direct and indirect environmental impact throughout the AI system life 
cycle, including, but not limited to, its carbon footprint, energy consumption 
… and reduce the environmental impact of AI systems and data 
infrastructures.”73 The impact of AI on energy and the environment should 
be part of the policy debate, but policymakers should also be careful not to 
overreact, especially given the prevalence of misleading narratives falsely 
depicting AI’s energy consumption as out of control.  

There are reasonable steps policymakers can take to ensure AI is part of 
the solution, not part of the problem, when it comes to the environment. To 
that end, policymakers should do the following: 

Develop Energy Transparency Standards for AI Models 
It is usually easier to manage things that can be measured, and energy use 
of AI models is no different. While many AI developers have begun 
publishing model cards—short documents that accompany the release of 
an AI model that detail information about its performance, limitations, and 
other relevant information—these do not always contain information about 
the energy used to train or use them.74 When they do include information 
about the environmental impact, they tend to focus on the carbon 
emissions from training rather than the energy needs for inference.75 This 
focus on the energy used for training is partially out of necessity, as the 
developers of a model cannot control the hardware others might run their 
model on in the future or specific use cases. But the amount of energy 
used for training does not necessarily impact the energy that will be 
required for inference. Therefore, choosing models based on the amount of 
energy used to train them rather than the life cycle energy costs could lead 
to less-efficient outcomes. 

To address this problem, policymakers should support the development of 
energy transparency standards for AI models, both for training and 
inference. In the United States, for example, the National Institute of 
Standards and Technology should work with the Department of Energy to 
develop a recommended best practice for assessing the training and 
inference energy costs. For example, this standard might include a set of 
benchmark tests and hardware to give comparable energy performance 
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metrics across different models. The United States should also work with 
the G7 and the Organization for Economic Cooperation and Development 
(OECD) to ensure broad adoption of these energy transparency standards 
to avoid different disclosure practices in different jurisdictions, especially 
since some countries might make such disclosures mandatory.  

Seek Voluntary Commitments on Energy Transparency for 
Foundation Models 
While developing transparency standards for AI models will help, it will also 
be important for leading AI companies to adopt these standards and 
disclose this information publicly. The White House has proactively sought 
out and obtained voluntary commitments from most of the leading U.S.-
based AI companies to promote “safe, secure, and transparent 
development and use of generative AI (foundation) model technology.”76 
While these commitments included important pledges from companies to 
engage in extensive testing to detect vulnerabilities and promises to avoid 
discrimination and bias in their models, they did not include any 
commitments around energy. To address that shortcoming, the White 
House should continue its dialogue with these companies to seek a 
voluntary commitment to publicly disclose the energy required to train and 
operate these foundation models, as well as the associated carbon 
emissions, especially for cloud-based AI service providers. Making this 
information publicly available will give users of foundation models the 
option to take the environmental footprint of AI into consideration when 
deciding which AI services to use. 

Consider Unintended Consequences of AI Regulations on Energy Use 
Many policymakers have called on developers to ensure their AI models 
minimize bias, avoid hate speech, limit disclosure of private information, 
and align to other, often worthwhile, goals. In many cases, developers are 
actively working to create models and build safeguards to address these 
concerns because they have strong market incentives to do so. However, 
policymakers rarely consider that their demands can raise the energy 
requirements to train and use AI models. For example, debiasing 
techniques for LLMs frequently add more energy costs in the training and 
fine-tuning stages.77 Similarly, implementing safeguards to check that 
LLMs do not return harmful output, such as offensive speech, can result in 
additional computing costs during inference.78 Thus, many of the proposed 
mandates for AI models could come at the expense of energy efficiency 
goals. The converse is also true: Mandates for energy-efficient AI models 
could create trade-offs that result in AI models that are less fair and more 
biased than they otherwise might be. 

The point is not that policymakers should never regulate any AI system, but 
rather that they should avoid rushing to regulate until they fully understand 
the implications of their decisions. For example, the EU’s AI Act initially 
included no requirements around energy efficiency. However, in response 
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to some of the misleading claims about AI’s environmental impact, the 
European Parliament’s proposed revisions to the legislation included 
substantial additions around energy, such as directing AI developers to 
integrate “state-of-the art methods and relevant applicable standards to 
reduce the energy use, resource use and waste, as well as to increase their 
energy efficiency and the overall efficiency of the system.”79 These 
requirements were in tension with other obligations in the AI Act to 
eliminate bias from AI models. While the AI Act now only includes more 
reasonable energy transparency requirements, the proposal from the 
European Parliament shows the potential for bad facts to lead to bad 
policy.  

Use AI to Decarbonize Government Operations 
AI offers important opportunities to improve the quality and efficiency of 
many government services, and adopting AI broadly across government 
agencies at every level should be a key priority for policymakers. In 
addition, AI can help the public sector reduce carbon emissions through 
more efficient digital services, smart cities and buildings, intelligent 
transportation systems, and other AI-enabled efficiencies. At the 2022 
United Nations Climate Change Conference of the Parties (COP27), the 
United States launched the Net-Zero Government Initiative, which commits 
national governments to reaching net-zero carbon emissions for their 
operations by 2050.80 To accelerate the use of AI across government 
agencies toward this goal, the president should sign an executive order 
directing the Technology Modernization Fund—a relatively new funding 
system for federal government IT projects—to include environmental 
impact as one of the core priority investment areas for projects to fund. In 
addition, the United States should invite and share best practices for using 
AI in government from the other countries that are part of the Net-Zero 
Government Initiative.  

CONCLUSION 
Policymakers need accurate information about the energy implications of 
AI. Unfortunately, groups that oppose AI, whether from honest 
misunderstanding of the evidence or intentional cherry-picking of the facts, 
continue to push the narrative that AI’s energy footprint is growing out of 
control. In December 2023—more than two years after the record was 
corrected—a columnist writing in The Guardian repeated the original false 
and misleading statistic about AI’s energy impact that has generated so 
much concern. The article stated: 

A study in 2019, for example, estimated the carbon footprint of 
training a single early large language model (LLM) such as GPT-2 at 
about 300,000kg of CO2 emissions—the equivalent of 125 round-trip 
flights between New York and Beijing. Since then, models have 
become exponentially bigger and their training footprints will therefore 
be proportionately larger.81 
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Just as the early predictions about the energy footprints of e-commerce 
and video streaming ultimately proved to be exaggerated, so too will those 
estimates about AI likely be wrong. But given the enormous opportunities 
to use AI to benefit the economy and society—including transitioning to a 
low-carbon future—it is imperative that policymakers and the media do a 
better job of vetting the claims they entertain about AI’s environmental 
impact.  
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APPENDIX 
Conversions and inferences shown for Table 1. All figures from source cited 
in table, unless otherwise noted. 

BERT 

0.65 metric tons CO2e = 1,438 lbs  

GPT-2 

1.7 MWh = 32 GPUs x 168 hours x 289W* x 1.1 PUE* 

*Using measurements from LaMDA. See Thoppilan et al., 2022. 

0.7 metric tons CO2e = 1.7 MWh x 0.429 CO2e/KWh* 

* Using measurement of U.S. average data center net CO2e/KWh from 
Patterson et al., 2021. 

Llama 2 

74 MWh = 184,320 GPU hours x 400W 

147 MWh = 368,640 GPU hours x 400W 

688 MWh = 1,720,320 GPU hours x 400W 

BLOOM 

2,820 hours = 1,082,990 million GPU hours / 384 GPUs 

Gopher 

1,151 MWh = 4,096 GPUs x 920 hours x 283W x 1.08 PUE 

PaLM 

3,436 MWh = [(6,144 GPUs x 1,200 hours) + (3,072 GPUs x 336 hours)] x 
378.5W x 1.08 PUE   
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